SYNOPSIS

#include <Inventor/SbDPMatrix.h>

Public Member Functions

SbDPMatrix (void)

SbDPMatrix (const double a11, const double a12, const double a13, const double a14, const double a21, const double a22, const double a23, const double a24, const double a31, const double a32, const double a33, const double a34, const double a41, const double a42, const double a43, const double a44)

SbDPMatrix (const SbDPMat &matrix)

SbDPMatrix (const SbDPMat *matrix)

SbDPMatrix (const SbMatrix &matrix)

~SbDPMatrix (void)

void setValue (const SbDPMat &m)

void setValue (const SbMatrix &m)

void setValue (const double *pMat)

const SbDPMat & getValue (void) const

void makeIdentity (void)

void setRotate (const SbDPRotation &q)

SbDPMatrix inverse (void) const

double det3 (int r1, int r2, int r3, int c1, int c2, int c3) const

double det3 (void) const

double det4 (void) const

SbBool equals (const SbDPMatrix &m, double tolerance) const

void getValue (SbDPMat &m) const

void setScale (const double s)

void setScale (const SbVec3d &s)

void setTranslate (const SbVec3d &t)

void setTransform (const SbVec3d &t, const SbDPRotation &r, const SbVec3d &s)

void setTransform (const SbVec3d &t, const SbDPRotation &r, const SbVec3d &s, const SbDPRotation &so)

void setTransform (const SbVec3d &translation, const SbDPRotation &rotation, const SbVec3d &scaleFactor, const SbDPRotation &scaleOrientation, const SbVec3d ¢er)

void getTransform (SbVec3d &t, SbDPRotation &r, SbVec3d &s, SbDPRotation &so) const

void getTransform (SbVec3d &translation, SbDPRotation &rotation, SbVec3d &scaleFactor, SbDPRotation &scaleOrientation, const SbVec3d ¢er) const

SbBool factor (SbDPMatrix &r, SbVec3d &s, SbDPMatrix &u, SbVec3d &t, SbDPMatrix &proj)

SbBool LUDecomposition (int index[4], double &d)

void LUBackSubstitution (int index[4], double b[4]) const

SbDPMatrix transpose (void) const

SbDPMatrix & multRight (const SbDPMatrix &m)

SbDPMatrix & multLeft (const SbDPMatrix &m)

void multMatrixVec (const SbVec3d &src, SbVec3d &dst) const

void multVecMatrix (const SbVec3d &src, SbVec3d &dst) const

void multDirMatrix (const SbVec3d &src, SbVec3d &dst) const

void multLineMatrix (const SbDPLine &src, SbDPLine &dst) const

void multVecMatrix (const SbVec4d &src, SbVec4d &dst) const

void print (FILE *fp) const

operator double * (void)

operator SbDPMat & (void)

double * operator[] (int i)

const double * operator[] (int i) const

SbDPMatrix & operator= (const SbDPMat &m)

SbDPMatrix & operator= (const SbDPMatrix &m)

SbDPMatrix & operator= (const SbDPRotation &q)

SbDPMatrix & operator*= (const SbDPMatrix &m)

Static Public Member Functions

static SbDPMatrix identity (void)

Friends

SbDPMatrix operator* (const SbDPMatrix &m1, const SbDPMatrix &m2)

int operator== (const SbDPMatrix &m1, const SbDPMatrix &m2)

int operator!= (const SbDPMatrix &m1, const SbDPMatrix &m2)

Detailed Description

The SbDPMatrix class is a 4x4 dimensional representation of a double-precision matrix.

This class is like the SbMatrix class, but uses double-precision floating point values for its elements. For more class documentation, see SbMatrix.

Since:

Coin 2.0.

Constructor & Destructor Documentation

SbDPMatrix::SbDPMatrix (void)

The default constructor does nothing. The matrix will be uninitialized.

SbDPMatrix::SbDPMatrix (const doublea11, const doublea12, const doublea13, const doublea14, const doublea21, const doublea22, const doublea23, const doublea24, const doublea31, const doublea32, const doublea33, const doublea34, const doublea41, const doublea42, const doublea43, const doublea44)

Constructs a matrix instance with the given initial elements.

SbDPMatrix::SbDPMatrix (const SbDPMat &matrixref)

Constructs a matrix instance with the initial elements from the matrix argument.

SbDPMatrix::SbDPMatrix (const SbDPMat *matrixptr)

This constructor is courtesy of the Microsoft Visual C++ compiler.

SbDPMatrix::SbDPMatrix (const \fBSbMatrix\fP &matrixref)

This constructor converts a single-precision matrix to a double-precision matrix.

SbDPMatrix::~SbDPMatrix (void)

Default destructor does nothing.

Member Function Documentation

void SbDPMatrix::setValue (const SbDPMat &m)

Copies the elements from m into the matrix.

See also:

getValue().

void SbDPMatrix::setValue (const \fBSbMatrix\fP &m)

Copies the elements from m into the matrix.

See also:

getValue().

void SbDPMatrix::setValue (const double *m)

Copies the elements from m into the matrix.

See also:

getValue().

const SbDPMat & SbDPMatrix::getValue (void) const

Returns a pointer to the 2 dimensional double array with the matrix elements.

See also:

setValue().

void SbDPMatrix::makeIdentity (void)

Set the matrix to be the identity matrix.

See also:

identity().

void SbDPMatrix::setRotate (const \fBSbDPRotation\fP &q)

Set matrix to be a rotation matrix with the given rotation.

See also:

setTranslate(), setScale().

\fBSbDPMatrix\fP SbDPMatrix::inverse (void) const

Return a new matrix which is the inverse matrix of this.

The user is responsible for checking that this is a valid operation to execute, by first making sure that the result of SbDPMatrix::det4() is not equal to zero.

double SbDPMatrix::det3 (intr1, intr2, intr3, intc1, intc2, intc3) const

Returns the determinant of the 3x3 submatrix specified by the row and column indices.

double SbDPMatrix::det3 (void) const

Returns the determinant of the upper left 3x3 submatrix.

double SbDPMatrix::det4 (void) const

Returns the determinant of the matrix.

SbBool SbDPMatrix::equals (const \fBSbDPMatrix\fP &m, doubletolerance) const

Check if the m matrix is equal to this one, within the given tolerance value. The tolerance value is applied in the comparison on a component by component basis.

void SbDPMatrix::getValue (SbDPMat &m) const

Return matrix components in the SbDPMat structure.

See also:

setValue().

\fBSbDPMatrix\fP SbDPMatrix::identity (void)\fC [static]\fP

Return the identity matrix.

See also:

makeIdentity().

void SbDPMatrix::setScale (const doubles)

Set matrix to be a pure scaling matrix. Scale factors are specified by s.

See also:

setRotate(), setTranslate().

void SbDPMatrix::setScale (const \fBSbVec3d\fP &s)

Set matrix to be a pure scaling matrix. Scale factors in x, y and z is specified by the s vector.

See also:

setRotate(), setTranslate().

void SbDPMatrix::setTranslate (const \fBSbVec3d\fP &t)

Make this matrix into a pure translation matrix (no scale or rotation components) with the given vector as the translation.

See also:

setRotate(), setScale().

void SbDPMatrix::setTransform (const \fBSbVec3d\fP &t, const \fBSbDPRotation\fP &r, const \fBSbVec3d\fP &s)

Set translation, rotation and scaling all at once. The resulting matrix gets calculated like this:

M = S * R * T

where S, R and T is scaling, rotation and translation matrices.

See also:

setTranslate(), setRotate(), setScale() and getTransform().

void SbDPMatrix::setTransform (const \fBSbVec3d\fP &t, const \fBSbDPRotation\fP &r, const \fBSbVec3d\fP &s, const \fBSbDPRotation\fP &so)

Set translation, rotation and scaling all at once with a specified scale orientation. The resulting matrix gets calculated like this:

M = Ro-¹ * S * Ro * R * T

where Ro is the scale orientation, and S, R and T is scaling, rotation and translation.

See also:

setTranslate(), setRotate(), setScale() and getTransform().

void SbDPMatrix::setTransform (const \fBSbVec3d\fP &translation, const \fBSbDPRotation\fP &rotation, const \fBSbVec3d\fP &scaleFactor, const \fBSbDPRotation\fP &scaleOrientation, const \fBSbVec3d\fP ¢er)

Set translation, rotation and scaling all at once with a specified scale orientation and center point. The resulting matrix gets calculated like this:

M = -Tc * Ro-¹ * S * Ro * R * T * Tc

where Tc is the center point, Ro the scale orientation, S, R and T is scaling, rotation and translation.

See also:

setTranslate(), setRotate(), setScale() and getTransform().

void SbDPMatrix::getTransform (\fBSbVec3d\fP &t, \fBSbDPRotation\fP &r, \fBSbVec3d\fP &s, \fBSbDPRotation\fP &so) const

Factor the matrix back into its translation, rotation, scale and scaleorientation components.

See also:

factor()

void SbDPMatrix::getTransform (\fBSbVec3d\fP &translation, \fBSbDPRotation\fP &rotation, \fBSbVec3d\fP &scaleFactor, \fBSbDPRotation\fP &scaleOrientation, const \fBSbVec3d\fP ¢er) const

Factor the matrix back into its translation, rotation, scaleFactor and scaleorientation components. Will eliminate the center variable from the matrix.

See also:

factor()

SbBool SbDPMatrix::factor (\fBSbDPMatrix\fP &r, \fBSbVec3d\fP &s, \fBSbDPMatrix\fP &u, \fBSbVec3d\fP &t, \fBSbDPMatrix\fP &proj)

This function is not implemented in Coin.

See also:

getTransform()

SbBool SbDPMatrix::LUDecomposition (intindex[4], double &d)

This function produces a permuted LU decomposition of the matrix. It uses the common single-row-pivoting strategy.

FALSE is returned if the matrix is singular, which it never is, because of small adjustment values inserted if a singularity is found (as Open Inventor does too).

The parity argument is always set to 1.0 or -1.0. Don't really know what it's for, so it's not checked for correctness.

The index[] argument returns the permutation that was done on the matrix to LU-decompose it. index[i] is the row that row i was swapped with at step i in the decomposition, so index[] is not the actual permutation of the row indexes!

BUGS: The function does not produce results that are numerically identical with those produced by Open Inventor for the same matrices, because the pivoting strategy in OI was never fully understood.

See also:

SbDPMatrix::LUBackSubstitution

void SbDPMatrix::LUBackSubstitution (intindex[4], doubleb[4]) const

This function does a solve on the 'Ax = b' system, given that the matrix is LU-decomposed in advance. First, a forward substitution is done on the lower system (Ly = b), and then a backwards substitution is done on the upper triangular system (Ux = y).

The index[] argument is the one returned from SbDPMatrix::LUDecomposition(), so see that function for an explanation.

The b[] argument must contain the b vector in 'Ax = b' when calling the function. After the function has solved the system, the b[] vector contains the x vector.

BUGS: As is done by Open Inventor, unsolvable x values will not return NaN but 0.

\fBSbDPMatrix\fP SbDPMatrix::transpose (void) const

Returns the transpose of this matrix.

\fBSbDPMatrix\fP & SbDPMatrix::multRight (const \fBSbDPMatrix\fP &m)

Let this matrix be right-multiplied by m. Returns reference to self.

See also:

multLeft()

\fBSbDPMatrix\fP & SbDPMatrix::multLeft (const \fBSbDPMatrix\fP &m)

Let this matrix be left-multiplied by m. Returns reference to self.

See also:

multRight()

void SbDPMatrix::multMatrixVec (const \fBSbVec3d\fP &src, \fBSbVec3d\fP &dst) const

Multiply src vector with this matrix and return the result in dst. Multiplication is done with the vector on the right side of the expression, i.e. dst = M * src.

See also:

multVecMatrix(), multDirMatrix() and multLineMatrix().

void SbDPMatrix::multVecMatrix (const \fBSbVec3d\fP &src, \fBSbVec3d\fP &dst) const

Multiply src vector with this matrix and return the result in dst. Multiplication is done with the vector on the left side of the expression, i.e. dst = src * M.

It is safe to let src and be the same SbVec3d instance.

See also:

multMatrixVec(), multDirMatrix() and multLineMatrix().

void SbDPMatrix::multDirMatrix (const \fBSbVec3d\fP &src, \fBSbVec3d\fP &dst) const

Multiplies src by the matrix. src is assumed to be a direction vector, and the translation components of the matrix are therefore ignored.

Multiplication is done with the vector on the left side of the expression, i.e. dst = src * M.

See also:

multVecMatrix(), multMatrixVec() and multLineMatrix().

void SbDPMatrix::multLineMatrix (const \fBSbDPLine\fP &src, \fBSbDPLine\fP &dst) const

Multiplies line point with the full matrix and multiplies the line direction with the matrix without the translation components.

See also:

multVecMatrix(), multMatrixVec() and multDirMatrix().

void SbDPMatrix::multVecMatrix (const \fBSbVec4d\fP &src, \fBSbVec4d\fP &dst) const

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

void SbDPMatrix::print (FILE *fp) const

Write out the matrix contents to the given file.

SbDPMatrix::operator double * (void)

Return pointer to the matrix' 4x4 double array.

SbDPMatrix::operator SbDPMat & (void)

Return pointer to the matrix' 4x4 double array.

double * SbDPMatrix::operator[] (inti)

Returns pointer to the 4 element array representing a matrix row. i should be within [0, 3].

See also:

getValue(), setValue().

const double * SbDPMatrix::operator[] (inti) const

Returns pointer to the 4 element array representing a matrix row. i should be within [0, 3].

See also:

getValue(), setValue().

\fBSbDPMatrix\fP & SbDPMatrix::operator= (const SbDPMat &m)

Assignment operator. Copies the elements from m to the matrix.

\fBSbDPMatrix\fP & SbDPMatrix::operator= (const \fBSbDPMatrix\fP &m)

Assignment operator. Copies the elements from m to the matrix.

\fBSbDPMatrix\fP & SbDPMatrix::operator= (const \fBSbDPRotation\fP &q)

Set matrix to be a rotation matrix with the given rotation.

See also:

setRotate().

\fBSbDPMatrix\fP & SbDPMatrix::operator*= (const \fBSbDPMatrix\fP &m)

Right-multiply with the m matrix.

See also:

multRight().

Friends And Related Function Documentation

\fBSbDPMatrix\fP operator* (const \fBSbDPMatrix\fP &m1, const \fBSbDPMatrix\fP &m2)\fC [friend]\fP

Multiplies matrix m1 with matrix m2 and returns the resultant matrix.

int operator== (const \fBSbDPMatrix\fP &m1, const \fBSbDPMatrix\fP &m2)\fC [friend]\fP

Compare matrices to see if they are equal. For two matrices to be equal, all their individual elements must be equal.

See also:

equals().

int operator!= (const \fBSbDPMatrix\fP &m1, const \fBSbDPMatrix\fP &m2)\fC [friend]\fP

Compare matrices to see if they are not equal. For two matrices to not be equal, it is enough that at least one of their elements are unequal.

See also:

equals().

Author

Generated automatically by Doxygen for Coin from the source code.