-
Carta.tech
-
Packages
-
mlpack-doc
-
380
- CMakeLists.txt.3
- Src/mlpack/tests/cmakelists.txt -
- IsVector.3
- If value == true, then vectype is some sort of armadillo vector or subview.
- IsVector_ arma_Col_ eT _ _.3
- Isvector arma::col et -
- IsVector_ arma_Row_ eT _ _.3
- Isvector arma::row et -
- IsVector_ arma_SpCol_ eT _ _.3
- Isvector arma::spcol et -
- IsVector_ arma_SpRow_ eT _ _.3
- Isvector arma::sprow et -
- IsVector_ arma_SpSubview_ eT _ _.3
- Isvector arma::spsubview et -
- IsVector_ arma_subview_col_ eT _ _.3
- Isvector arma::subview_col et -
- IsVector_ arma_subview_row_ eT _ _.3
- Isvector arma::subview_row et -
- RASearch.3
- The rasearch class: this class provides a generic manner to perform rank-approximate search via random-sampling.
- TREE_EXPLANATION.txt.3
- Src/mlpack/core/tree/tree_explanation.txt -
- TraversalInfo.3
- The traversalinfo class holds traversal information which is used in dual-tree (and single-tree) traversals.
- allow_empty_clusters.hpp.3
- Src/mlpack/methods/kmeans/allow_empty_clusters.hpp -
- amf.hpp.3
- Src/mlpack/methods/amf/amf.hpp -
- arma_traits.hpp.3
- Src/mlpack/core/util/arma_traits.hpp -
- aug_lagrangian.hpp.3
- Src/mlpack/core/optimizers/aug_lagrangian/aug_lagrangian.hpp -
- aug_lagrangian_function.hpp.3
- Src/mlpack/core/optimizers/aug_lagrangian/aug_lagrangian_function.hpp -
- aug_lagrangian_test_functions.hpp.3
- Src/mlpack/core/optimizers/aug_lagrangian/aug_lagrangian_test_functions.hpp -
- ballbound.hpp.3
- Bounds that are useful for binary space partitioning trees.
- binary_space_tree.hpp.3
- Src/mlpack/core/tree/binary_space_tree.hpp -
- bounds.hpp.3
- Bounds that are useful for binary space partitioning trees.
- bug.3
- Bug list the counter variable is used in most cases to guarantee a unique global identifier for options declared using the param_*() macros. however, not all compilers have this support--most notably, gcc 4.3. in that case, the line macro is used as an attempt to get a unique global identifier, but collisions are still possible, and they produce bizarre error messages. see http://mlpack.org/trac/ticket/74 for more information. the counter variable is used in most cases to guarantee a unique global identifier for options declared using the param_*() macros. however, not all compilers have this support--most notably, gcc 4.3. in that case, the line macro is used as an attempt to get a unique global identifier, but collisions are still possible, and they produce bizarre error messages. see http://mlpack.org/trac/ticket/74 for more information. the counter variable is used in most cases to guarantee a unique global identifier for options declared using the param_*() macros. however, not all compilers have this support--most notably, gcc 4.3. in that case, the line macro is used as an attempt to get a unique global identifier, but collisions are still possible, and they produce bizarre error messages. see http://mlpack.org/trac/ticket/74 for more information. the counter variable is used in most cases to guarantee a unique global identifier for options declared using the param_*() macros. however, not all compilers have this support--most notably, gcc 4.3. in that case, the line macro is used as an attempt to get a unique global identifier, but collisions are still possible, and they produce bizarre error messages. see http://mlpack.org/trac/ticket/74 for more information. the counter variable is used in most cases to guarantee a unique global identifier for options declared using the param_*() macros. however, not all compilers have this support--most notably, gcc 4.3. in that case, the line macro is used as an attempt to get a unique global identifier, but collisions are still possible, and they produce bizarre error messages. see http://mlpack.org/trac/ticket/74 for more information. the counter variable is used in most cases to guarantee a unique global identifier for options declared using the param_*() macros. however, not all compilers have this support--most notably, gcc 4.3. in that case, the line macro is used as an attempt to get a unique global identifier, but collisions are still possible, and they produce bizarre error messages. see http://mlpack.org/trac/ticket/74 for more information. the counter variable is used in most cases to guarantee a unique global identifier for options declared using the param_*() macros. however, not all compilers have this support--most notably, gcc 4.3. in that case, the line macro is used as an attempt to get a unique global identifier, but collisions are still possible, and they produce bizarre error messages. see http://mlpack.org/trac/ticket/74 for more information. the counter variable is used in most cases to guarantee a unique global identifier for options declared using the param_*() macros. however, not all compilers have this support--most notably, gcc 4.3. in that case, the line macro is used as an attempt to get a unique global identifier, but collisions are still possible, and they produce bizarre error messages. see http://mlpack.org/trac/ticket/74 for more information. the counter variable is used in most cases to guarantee a unique global identifier for options declared using the param_*() macros. however, not all compilers have this support--most notably, gcc 4.3. in that case, the line macro is used as an attempt to get a unique global identifier, but collisions are still possible, and they produce bizarre error messages. see http://mlpack.org/trac/ticket/74 for more information. the counter variable is used in most cases to guarantee a unique global identifier for options declared using the param_*() macros. however, not all compilers have this support--most notably, gcc 4.3. in that case, the line macro is used as an attempt to get a unique global identifier, but collisions are still possible, and they produce bizarre error messages. see http://mlpack.org/trac/ticket/74 for more information. the counter variable is used in most cases to guarantee a unique global identifier for options declared using the param_*() macros. however, not all compilers have this support--most notably, gcc 4.3. in that case, the line macro is used as an attempt to get a unique global identifier, but collisions are still possible, and they produce bizarre error messages. see http://mlpack.org/trac/ticket/74 for more information. the counter variable is used in most cases to guarantee a unique global identifier for options declared using the param_*() macros. however, not all compilers have this support--most notably, gcc 4.3. in that case, the line macro is used as an attempt to get a unique global identifier, but collisions are still possible, and they produce bizarre error messages. see http://mlpack.org/trac/ticket/74 for more information.
- build.3
- Building mlpack
- build.hpp.3
- Doc/guide/build.hpp -
- cf.hpp.3
- Src/mlpack/methods/cf/cf.hpp -
- clamp.hpp.3
- Miscellaneous math clamping routines.
- cli.hpp.3
- Src/mlpack/core/util/cli.hpp -
- cli_deleter.hpp.3
- Src/mlpack/core/util/cli_deleter.hpp -
- complete_incremental_termination.hpp.3
- Src/mlpack/methods/amf/termination_policies/complete_incremental_termination.hpp -
- core.hpp.3
- Src/mlpack/core.hpp -
- cosine_distance.hpp.3
- Src/mlpack/core/kernels/cosine_distance.hpp -
- cosine_tree.hpp.3
- Src/mlpack/core/tree/cosine_tree/cosine_tree.hpp -
- cover_tree.hpp.3
- Src/mlpack/core/tree/cover_tree.hpp -
- data_3d_ind.txt.3
- Src/mlpack/tests/data/data_3d_ind.txt -
- data_3d_mixed.txt.3
- Src/mlpack/tests/data/data_3d_mixed.txt -
- data_dependent_random_initializer.hpp.3
- Src/mlpack/methods/sparse_coding/data_dependent_random_initializer.hpp -
- decision_stump.hpp.3
- Src/mlpack/methods/decision_stump/decision_stump.hpp -
- det.txt.3
- Tutorial for how to perform density estimation with density estimation trees (det).
- dettutorial.3
- Density estimation tree (det) tutorial
- diagonal_constraint.hpp.3
- Src/mlpack/methods/gmm/diagonal_constraint.hpp -
- discrete_distribution.hpp.3
- Src/mlpack/core/dists/discrete_distribution.hpp -
- dt_utils.hpp.3
- Src/mlpack/methods/det/dt_utils.hpp -
- dtb.hpp.3
- Src/mlpack/methods/emst/dtb.hpp -
- dtb_rules.hpp.3
- Src/mlpack/methods/emst/dtb_rules.hpp -
- dtb_stat.hpp.3
- Src/mlpack/methods/emst/dtb_stat.hpp -
- dtree.hpp.3
- Src/mlpack/methods/det/dtree.hpp -
- dual_tree_traverser.hpp.3
- Src/mlpack/core/tree/cover_tree/dual_tree_traverser.hpp -
- edge_pair.hpp.3
- Src/mlpack/methods/emst/edge_pair.hpp -
- eigenvalue_ratio_constraint.hpp.3
- Src/mlpack/methods/gmm/eigenvalue_ratio_constraint.hpp -
- em_fit.hpp.3
- Src/mlpack/methods/gmm/em_fit.hpp -
- emst.txt.3
- Tutorial for the euclidean minimum spanning tree algorithm.
- emst_tutorial.3
- Emst tutorial
- epanechnikov_kernel.hpp.3
- Src/mlpack/core/kernels/epanechnikov_kernel.hpp -
- example_kernel.hpp.3
- Src/mlpack/core/kernels/example_kernel.hpp -
- example_tree.hpp.3
- Src/mlpack/core/tree/example_tree.hpp -
- exponential_schedule.hpp.3
- Src/mlpack/core/optimizers/sa/exponential_schedule.hpp -
- fastmks.hpp.3
- Src/mlpack/methods/fastmks/fastmks.hpp -
- fastmks.txt.3
- Tutorial for how to use fastmks in mlpack.
- fastmks_rules.hpp.3
- Src/mlpack/methods/fastmks/fastmks_rules.hpp -
- fastmks_stat.hpp.3
- Src/mlpack/methods/fastmks/fastmks_stat.hpp -
- first_point_is_root.hpp.3
- Src/mlpack/core/tree/cover_tree/first_point_is_root.hpp -
- fmkstutorial.3
- Fast max-kernel search tutorial (fastmks)
- furthest_neighbor_sort.hpp.3
- Src/mlpack/methods/neighbor_search/sort_policies/furthest_neighbor_sort.hpp -
- gaussian_distribution.hpp.3
- Src/mlpack/core/dists/gaussian_distribution.hpp -
- gaussian_kernel.hpp.3
- Src/mlpack/core/kernels/gaussian_kernel.hpp -
- gmm.hpp.3
- Src/mlpack/methods/gmm/gmm.hpp -
- hmm.hpp.3
- Src/mlpack/methods/hmm/hmm.hpp -
- hmm_util.hpp.3
- Src/mlpack/methods/hmm/hmm_util.hpp -
- hrectbound.hpp.3
- Bounds that are useful for binary space partitioning trees.
- hyperbolic_tangent_kernel.hpp.3
- Src/mlpack/core/kernels/hyperbolic_tangent_kernel.hpp -
- incomplete_incremental_termination.hpp.3
- Src/mlpack/methods/amf/termination_policies/incomplete_incremental_termination.hpp -
- iodoc.3
- Mlpack input and output
- iodoc.hpp.3
- Doc/guide/iodoc.hpp -
- ip_metric.hpp.3
- Src/mlpack/core/metrics/ip_metric.hpp -
- iris.txt.3
- Src/mlpack/tests/data/iris.txt -
- iris_labels.txt.3
- Src/mlpack/tests/data/iris_labels.txt -
- kernel_pca.hpp.3
- Src/mlpack/methods/kernel_pca/kernel_pca.hpp -
- kernel_traits.hpp.3
- Src/mlpack/core/kernels/kernel_traits.hpp -
- kmeans.hpp.3
- Src/mlpack/methods/kmeans/kmeans.hpp -
- kmeans.txt.3
- Tutorial for how to use k-means in mlpack.
- kmeans_selection.hpp.3
- Src/mlpack/methods/nystroem_method/kmeans_selection.hpp -
- kmtutorial.3
- K-means tutorial (kmeans)
- laplace_distribution.hpp.3
- Src/mlpack/core/dists/laplace_distribution.hpp -
- laplacian_kernel.hpp.3
- Src/mlpack/core/kernels/laplacian_kernel.hpp -
- lars.hpp.3
- Src/mlpack/methods/lars/lars.hpp -
- lbfgs.hpp.3
- Src/mlpack/core/optimizers/lbfgs/lbfgs.hpp -
- lcc.hpp.3
- Src/mlpack/methods/local_coordinate_coding/lcc.hpp -
- lin_alg.hpp.3
- Src/mlpack/core/math/lin_alg.hpp -
- linear_kernel.hpp.3
- Src/mlpack/core/kernels/linear_kernel.hpp -
- linear_regression.hpp.3
- Src/mlpack/methods/linear_regression/linear_regression.hpp -
- linear_regression.txt.3
- Tutorial for how to use the linearregression class.
- lmetric.hpp.3
- Src/mlpack/core/metrics/lmetric.hpp -
- load.hpp.3
- Src/mlpack/core/data/load.hpp -
- log.hpp.3
- Src/mlpack/core/util/log.hpp -
- logistic_regression.hpp.3
- Src/mlpack/methods/logistic_regression/logistic_regression.hpp -
- logistic_regression_function.hpp.3
- Src/mlpack/methods/logistic_regression/logistic_regression_function.hpp -
- lrsdp.hpp.3
- Src/mlpack/core/optimizers/lrsdp/lrsdp.hpp -
- lrsdp_function.hpp.3
- Src/mlpack/core/optimizers/lrsdp/lrsdp_function.hpp -
- lrtutorial.3
- Linear/ridge regression tutorial (linear_regression)
- lsh_search.hpp.3
- Src/mlpack/methods/lsh/lsh_search.hpp -
- mahalanobis_distance.hpp.3
- Src/mlpack/core/metrics/mahalanobis_distance.hpp -
- matrices.3
- Matrices in mlpack
- matrices.hpp.3
- Doc/guide/matrices.hpp -
- max_variance_new_cluster.hpp.3
- Src/mlpack/methods/kmeans/max_variance_new_cluster.hpp -
- mean_split.hpp.3
- Src/mlpack/core/tree/binary_space_tree/mean_split.hpp -
- mlpack.3
- Linear algebra utility functions, generally performed on matrices or vectors.
- mlpack_CLI.3
- Parses the command line for parameters and holds user-specified parameters.
- mlpack_Log.3
- Provides a convenient way to give formatted output.
- mlpack_ParamData.3
- Aids in the extensibility of cli by focusing potential changes into one structure.
- mlpack_Timer.3
- The timer class provides a way for mlpack methods to be timed.
- mlpack_Timers.3
- Mlpack::timers -
- mlpack_amf.3
- Mlpack::amf -
- mlpack_amf_AMF.3
- This class implements amf (alternating matrix factorization) on the given matrix v.
- mlpack_amf_CompleteIncrementalTermination.3
- Mlpack::amf::completeincrementaltermination terminationpolicy -
- mlpack_amf_IncompleteIncrementalTermination.3
- Mlpack::amf::incompleteincrementaltermination terminationpolicy -
- mlpack_amf_NMFALSUpdate.3
- The alternating least square update rules of matrices w and h.
- mlpack_amf_NMFMultiplicativeDistanceUpdate.3
- The multiplicative distance update rules for matrices w and h.
- mlpack_amf_NMFMultiplicativeDivergenceUpdate.3
- Mlpack::amf::nmfmultiplicativedivergenceupdate -
- mlpack_amf_RandomAcolInitialization.3
- This class initializes the w matrix of the nmf algorithm by averaging p randomly chosen columns of v.
- mlpack_amf_RandomInitialization.3
- Mlpack::amf::randominitialization -
- mlpack_amf_SVDBatchLearning.3
- Mlpack::amf::svdbatchlearning -
- mlpack_amf_SVDCompleteIncrementalLearning.3
- Mlpack::amf::svdcompleteincrementallearning mattype -
- mlpack_amf_SVDCompleteIncrementalLearning_ arma_sp_mat _.3
- Mlpack::amf::svdcompleteincrementallearning arma::sp_mat -
- mlpack_amf_SVDIncompleteIncrementalLearning.3
- Mlpack::amf::svdincompleteincrementallearning -
- mlpack_amf_SimpleResidueTermination.3
- Mlpack::amf::simpleresiduetermination -
- mlpack_amf_SimpleToleranceTermination.3
- Mlpack::amf::simpletolerancetermination mattype -
- mlpack_amf_ValidationRMSETermination.3
- Mlpack::amf::validationrmsetermination mattype -
- mlpack_bound.3
- Mlpack::bound -
- mlpack_bound_BallBound.3
- Ball bound encloses a set of points at a specific distance (radius) from a specific point (center).
- mlpack_bound_HRectBound.3
- Hyper-rectangle bound for an l-metric.
- mlpack_cf.3
- Collaborative filtering.
- mlpack_cf_CF.3
- This class implements collaborative filtering (cf).
- mlpack_data.3
- Functions to load and save matrices.
- mlpack_decision_stump.3
- Mlpack::decision_stump -
- mlpack_decision_stump_DecisionStump.3
- This class implements a decision stump.
- mlpack_det.3
- Density estimation trees.
- mlpack_det_DTree.3
- A density estimation tree is similar to both a decision tree and a space partitioning tree (like a kd-tree).
- mlpack_distribution.3
- Probability distributions.
- mlpack_distribution_DiscreteDistribution.3
- A discrete distribution where the only observations are discrete observations.
- mlpack_distribution_GaussianDistribution.3
- A single multivariate gaussian distribution.
- mlpack_distribution_LaplaceDistribution.3
- The multivariate laplace distribution centered at 0 has pdf.
- mlpack_emst.3
- Euclidean minimum spanning trees.
- mlpack_emst_DTBRules.3
- Mlpack::emst::dtbrules metrictype, treetype -
- mlpack_emst_DTBStat.3
- A statistic for use with mlpack trees, which stores the upper bound on distance to nearest neighbors and the component which this node belongs to.
- mlpack_emst_DualTreeBoruvka.3
- Performs the mst calculation using the dual-tree boruvka algorithm, using any type of tree.
- mlpack_emst_DualTreeBoruvka_SortEdgesHelper.3
- For sorting the edge list after the computation.
- mlpack_emst_EdgePair.3
- An edge pair is simply two indices and a distance.
- mlpack_emst_UnionFind.3
- A union-find data structure.
- mlpack_fastmks.3
- Fast max-kernel search.
- mlpack_fastmks_FastMKS.3
- An implementation of fast exact max-kernel search.
- mlpack_fastmks_FastMKSRules.3
- The base case and pruning rules for fastmks (fast max-kernel search).
- mlpack_fastmks_FastMKSStat.3
- The statistic used in trees with fastmks.
- mlpack_gmm.3
- Gaussian mixture models.
- mlpack_gmm_DiagonalConstraint.3
- Force a covariance matrix to be diagonal.
- mlpack_gmm_EMFit.3
- This class contains methods which can fit a gmm to observations using the em algorithm.
- mlpack_gmm_EigenvalueRatioConstraint.3
- Given a vector of eigenvalue ratios, ensure that the covariance matrix always has those eigenvalue ratios.
- mlpack_gmm_GMM.3
- A gaussian mixture model (gmm).
- mlpack_gmm_NoConstraint.3
- This class enforces no constraint on the covariance matrix.
- mlpack_gmm_PositiveDefiniteConstraint.3
- Given a covariance matrix, force the matrix to be positive definite.
- mlpack_hmm.3
- Hidden markov models.
- mlpack_hmm_HMM.3
- A class that represents a hidden markov model with an arbitrary type of emission distribution.
- mlpack_kernel.3
- Kernel functions.
- mlpack_kernel_CosineDistance.3
- The cosine distance (or cosine similarity).
- mlpack_kernel_EpanechnikovKernel.3
- The epanechnikov kernel, defined as.
- mlpack_kernel_ExampleKernel.3
- An example kernel function.
- mlpack_kernel_GaussianKernel.3
- The standard gaussian kernel.
- mlpack_kernel_HyperbolicTangentKernel.3
- Hyperbolic tangent kernel.
- mlpack_kernel_KMeansSelection.3
- Mlpack::kernel::kmeansselection clusteringtype -
- mlpack_kernel_KernelTraits.3
- This is a template class that can provide information about various kernels.
- mlpack_kernel_KernelTraits_ CosineDistance _.3
- Kernel traits for the cosine distance.
- mlpack_kernel_KernelTraits_ EpanechnikovKernel _.3
- Kernel traits for the epanechnikov kernel.
- mlpack_kernel_KernelTraits_ GaussianKernel _.3
- Kernel traits for the gaussian kernel.
- mlpack_kernel_KernelTraits_ LaplacianKernel _.3
- Kernel traits of the laplacian kernel.
- mlpack_kernel_KernelTraits_ SphericalKernel _.3
- Kernel traits for the spherical kernel.
- mlpack_kernel_KernelTraits_ TriangularKernel _.3
- Kernel traits for the triangular kernel.
- mlpack_kernel_LaplacianKernel.3
- The standard laplacian kernel.
- mlpack_kernel_LinearKernel.3
- The simple linear kernel (dot product).
- mlpack_kernel_NystroemMethod.3
- Mlpack::kernel::nystroemmethod kerneltype, pointselectionpolicy -
- mlpack_kernel_OrderedSelection.3
- Mlpack::kernel::orderedselection -
- mlpack_kernel_PSpectrumStringKernel.3
- The p-spectrum string kernel.
- mlpack_kernel_PolynomialKernel.3
- The simple polynomial kernel.
- mlpack_kernel_RandomSelection.3
- Mlpack::kernel::randomselection -
- mlpack_kernel_SphericalKernel.3
- Mlpack::kernel::sphericalkernel -
- mlpack_kernel_TriangularKernel.3
- The trivially simple triangular kernel, defined by.
- mlpack_kmeans.3
- K-means clustering.
- mlpack_kmeans_AllowEmptyClusters.3
- Policy which allows k-means to create empty clusters without any error being reported.
- mlpack_kmeans_KMeans.3
- This class implements k-means clustering.
- mlpack_kmeans_MaxVarianceNewCluster.3
- When an empty cluster is detected, this class takes the point furthest from the centroid of the cluster with maximum variance as a new cluster.
- mlpack_kmeans_RandomPartition.3
- A very simple partitioner which partitions the data randomly into the number of desired clusters.
- mlpack_kmeans_RefinedStart.3
- A refined approach for choosing initial points for k-means clustering.
- mlpack_kpca.3
- Mlpack::kpca -
- mlpack_kpca_KernelPCA.3
- This class performs kernel principal components analysis (kernel pca), for a given kernel.
- mlpack_kpca_NaiveKernelRule.3
- Mlpack::kpca::naivekernelrule kerneltype -
- mlpack_kpca_NystroemKernelRule.3
- Mlpack::kpca::nystroemkernelrule kerneltype, pointselectionpolicy -
- mlpack_lcc.3
- Mlpack::lcc -
- mlpack_lcc_LocalCoordinateCoding.3
- An implementation of local coordinate coding (lcc) that codes data which approximately lives on a manifold using a variation of l1-norm regularized sparse coding; in lcc, the penalty on the absolute value of each point's coefficient for each atom is weighted by the squared distance of that point to that atom.
- mlpack_math.3
- Miscellaneous math routines.
- mlpack_math_Range.3
- Simple real-valued range.
- mlpack_metric.3
- Mlpack::metric -
- mlpack_metric_IPMetric.3
- Mlpack::metric::ipmetric kerneltype -
- mlpack_metric_LMetric.3
- The l_p metric for arbitrary integer p, with an option to take the root.
- mlpack_metric_MahalanobisDistance.3
- The mahalanobis distance, which is essentially a stretched euclidean distance.
- mlpack_mvu.3
- Mlpack::mvu -
- mlpack_mvu_MVU.3
- The mvu class is meant to provide a good abstraction for users.
- mlpack_naive_bayes.3
- The naive bayes classifier.
- mlpack_naive_bayes_NaiveBayesClassifier.3
- The simple naive bayes classifier.
- mlpack_nca.3
- Neighborhood components analysis.
- mlpack_nca_NCA.3
- An implementation of neighborhood components analysis, both a linear dimensionality reduction technique and a distance learning technique.
- mlpack_nca_SoftmaxErrorFunction.3
- The 'softmax' stochastic neighbor assignment probability function.
- mlpack_neighbor.3
- Neighbor-search routines.
- mlpack_neighbor_FurthestNeighborSort.3
- This class implements the necessary methods for the sortpolicy template parameter of the neighborsearch class.
- mlpack_neighbor_LSHSearch.3
- The lshsearch class -- this class builds a hash on the reference set and uses this hash to compute the distance-approximate nearest-neighbors of the given queries.
- mlpack_neighbor_NearestNeighborSort.3
- This class implements the necessary methods for the sortpolicy template parameter of the neighborsearch class.
- mlpack_neighbor_NeighborSearch.3
- The neighborsearch class is a template class for performing distance-based neighbor searches.
- mlpack_neighbor_NeighborSearchRules.3
- Mlpack::neighbor::neighborsearchrules sortpolicy, metrictype, treetype -
- mlpack_neighbor_NeighborSearchStat.3
- Extra data for each node in the tree.
- mlpack_neighbor_NeighborSearchTraversalInfo.3
- Traversal information for neighborsearch.
- mlpack_neighbor_RASearchRules.3
- Mlpack::neighbor::rasearchrules sortpolicy, metrictype, treetype -
- mlpack_nn.3
- Mlpack::nn -
- mlpack_nn_SparseAutoencoder.3
- A sparse autoencoder is a neural network whose aim to learn compressed representations of the data, typically for dimensionality reduction, with a constraint on the activity of the neurons in the network.
- mlpack_nn_SparseAutoencoderFunction.3
- This is a class for the sparse autoencoder objective function.
- mlpack_optimization.3
- Mlpack::optimization -
- mlpack_optimization_AugLagrangian.3
- The auglagrangian class implements the augmented lagrangian method of optimization.
- mlpack_optimization_AugLagrangianFunction.3
- This is a utility class used by auglagrangian, meant to wrap a lagrangianfunction into a function usable by a simple optimizer like l-bfgs.
- mlpack_optimization_AugLagrangianTestFunction.3
- This function is taken from 'practical mathematical optimization' (snyman), section 5.3.8 ('application of the augmented lagrangian method').
- mlpack_optimization_ExponentialSchedule.3
- The exponential cooling schedule cools the temperature t at every step according to the equation.
- mlpack_optimization_GockenbachFunction.3
- This function is taken from m.
- mlpack_optimization_LRSDP.3
- Lrsdp is the implementation of monteiro and burer's formulation of low-rank semidefinite programs (lr-sdp).
- mlpack_optimization_LRSDPFunction.3
- The objective function that lrsdp is trying to optimize.
- mlpack_optimization_L_BFGS.3
- The generic l-bfgs optimizer, which uses a back-tracking line search algorithm to minimize a function.
- mlpack_optimization_LovaszThetaSDP.3
- This function is the lovasz-theta semidefinite program, as implemented in the following paper:
- mlpack_optimization_SA.3
- Simulated annealing is an stochastic optimization algorithm which is able to deliver near-optimal results quickly without knowing the gradient of the function being optimized.
- mlpack_optimization_SGD.3
- Stochastic gradient descent is a technique for minimizing a function which can be expressed as a sum of other functions.
- mlpack_optimization_test.3
- Mlpack::optimization::test -
- mlpack_optimization_test_RosenbrockWoodFunction.3
- The generalized rosenbrock function in 4 dimensions with the wood function in four dimensions.
- mlpack_optimization_test_SGDTestFunction.3
- Very, very simple test function which is the composite of three other functions.
- mlpack_pca.3
- Mlpack::pca -
- mlpack_pca_PCA.3
- This class implements principal components analysis (pca).
- mlpack_perceptron.3
- Mlpack::perceptron -
- mlpack_perceptron_Perceptron.3
- This class implements a simple perceptron (i.e., a single layer neural network).
- mlpack_perceptron_RandomInitialization.3
- This class is used to initialize weights for the weightvectors matrix in a random manner.
- mlpack_perceptron_SimpleWeightUpdate.3
- Mlpack::perceptron::simpleweightupdate -
- mlpack_perceptron_ZeroInitialization.3
- This class is used to initialize the matrix weightvectors to zero.
- mlpack_radical.3
- Mlpack::radical -
- mlpack_radical_Radical.3
- An implementation of radical, an algorithm for independent component analysis (ica).
- mlpack_range.3
- Range-search routines.
- mlpack_range_RangeSearch.3
- The rangesearch class is a template class for performing range searches.
- mlpack_range_RangeSearchRules.3
- Mlpack::range::rangesearchrules metrictype, treetype -
- mlpack_range_RangeSearchStat.3
- Statistic class for rangesearch, to be set to the statistictype of the tree type that range search is being performed with.
- mlpack_regression.3
- Regression methods.
- mlpack_regression_LARS.3
- An implementation of lars, a stage-wise homotopy-based algorithm for l1-regularized linear regression (lasso) and l1+l2 regularized linear regression (elastic net).
- mlpack_regression_LinearRegression.3
- A simple linear regression algorithm using ordinary least squares.
- mlpack_regression_LogisticRegression.3
- Mlpack::regression::logisticregression optimizertype -
- mlpack_regression_LogisticRegressionFunction.3
- The log-likelihood function for the logistic regression objective function.
- mlpack_sparse_coding.3
- Mlpack::sparse_coding -
- mlpack_sparse_coding_DataDependentRandomInitializer.3
- A data-dependent random dictionary initializer for sparsecoding.
- mlpack_sparse_coding_NothingInitializer.3
- A dictionaryinitializer for sparsecoding which does not initialize anything; it is useful for when the dictionary is already known and will be set with sparsecoding::dictionary().
- mlpack_sparse_coding_RandomInitializer.3
- A dictionaryinitializer for use with the sparsecoding class.
- mlpack_sparse_coding_SparseCoding.3
- An implementation of sparse coding with dictionary learning that achieves sparsity via an l1-norm regularizer on the codes (lasso) or an (l1+l2)-norm regularizer on the codes (the elastic net).
- mlpack_svd.3
- Mlpack::svd -
- mlpack_svd_QUIC_SVD.3
- Mlpack::svd::quic_svd -
- mlpack_svd_RegularizedSVD.3
- Mlpack::svd::regularizedsvd optimizertype -
- mlpack_svd_RegularizedSVDFunction.3
- Mlpack::svd::regularizedsvdfunction -
- mlpack_tree.3
- Trees and tree-building procedures.
- mlpack_tree_BinarySpaceTree.3
- A binary space partitioning tree, such as a kd-tree or a ball tree.
- mlpack_tree_BinarySpaceTree_DualTreeTraverser.3
- A dual-tree traverser for binary space trees; see dual_tree_traverser.hpp.
- mlpack_tree_BinarySpaceTree_SingleTreeTraverser.3
- A single-tree traverser for binary space trees; see single_tree_traverser.hpp for implementation.
- mlpack_tree_CompareCosineNode.3
- Mlpack::tree::comparecosinenode -
- mlpack_tree_CosineTree.3
- Mlpack::tree::cosinetree -
- mlpack_tree_CoverTree.3
- A cover tree is a tree specifically designed to speed up nearest-neighbor computation in high-dimensional spaces.
- mlpack_tree_CoverTree_DualTreeTraverser.3
- A dual-tree cover tree traverser; see dual_tree_traverser.hpp.
- mlpack_tree_CoverTree_DualTreeTraverser_DualCoverTreeMapEntry.3
- Struct used for traversal.
- mlpack_tree_CoverTree_SingleTreeTraverser.3
- A single-tree cover tree traverser; see single_tree_traverser.hpp for implementation.
- mlpack_tree_EmptyStatistic.3
- Empty statistic if you are not interested in storing statistics in your tree.
- mlpack_tree_ExampleTree.3
- This is not an actual space tree but instead an example tree that exists to show and document all the functions that mlpack trees must implement.
- mlpack_tree_FirstPointIsRoot.3
- This class is meant to be used as a choice for the policy class rootpointpolicy of the covertree class.
- mlpack_tree_MRKDStatistic.3
- Statistic for multi-resolution kd-trees.
- mlpack_tree_MeanSplit.3
- A binary space partitioning tree node is split into its left and right child.
- mlpack_tree_TreeTraits.3
- The treetraits class provides compile-time information on the characteristics of a given tree type.
- mlpack_tree_TreeTraits_ BinarySpaceTree_ BoundType, StatisticType, MatType _ _.3
- This is a specialization of the treetype class to the binaryspacetree tree type.
- mlpack_tree_TreeTraits_ CoverTree_ MetricType, RootPointPolicy, StatisticType _ _.3
- The specialization of the treetraits class for the covertree tree type.
- mlpack_util.3
- Mlpack::util -
- mlpack_util_CLIDeleter.3
- Extremely simple class whose only job is to delete the existing cli object at the end of execution.
- mlpack_util_NullOutStream.3
- Used for log::debug when not compiled with debugging symbols.
- mlpack_util_Option.3
- A static object whose constructor registers a parameter with the cli class.
- mlpack_util_PrefixedOutStream.3
- Allows us to output to an ostream with a prefix at the beginning of each line, in the same way we would output to cout or cerr.
- mlpack_util_ProgramDoc.3
- A static object whose constructor registers program documentation with the cli class.
- mlpack_util_SaveRestoreUtility.3
- Mlpack::util::saverestoreutility -
- mrkd_statistic.hpp.3
- Src/mlpack/core/tree/mrkd_statistic.hpp -
- mvu.hpp.3
- Src/mlpack/methods/mvu/mvu.hpp -
- naive_bayes_classifier.hpp.3
- Src/mlpack/methods/naive_bayes/naive_bayes_classifier.hpp -
- naive_method.hpp.3
- Src/mlpack/methods/kernel_pca/kernel_rules/naive_method.hpp -
- nca.hpp.3
- Src/mlpack/methods/nca/nca.hpp -
- nca_softmax_error_function.hpp.3
- Src/mlpack/methods/nca/nca_softmax_error_function.hpp -
- nearest_neighbor_sort.hpp.3
- Src/mlpack/methods/neighbor_search/sort_policies/nearest_neighbor_sort.hpp -
- neighbor_search.hpp.3
- Src/mlpack/methods/neighbor_search/neighbor_search.hpp -
- neighbor_search.txt.3
- Tutorial for how to use the neighborsearch class.
- neighbor_search_rules.hpp.3
- Src/mlpack/methods/neighbor_search/neighbor_search_rules.hpp -
- neighbor_search_stat.hpp.3
- Src/mlpack/methods/neighbor_search/neighbor_search_stat.hpp -
- nmf_als.hpp.3
- Src/mlpack/methods/amf/update_rules/nmf_als.hpp -
- nmf_mult_dist.hpp.3
- Src/mlpack/methods/amf/update_rules/nmf_mult_dist.hpp -
- nmf_mult_div.hpp.3
- Src/mlpack/methods/amf/update_rules/nmf_mult_div.hpp -
- no_constraint.hpp.3
- Src/mlpack/methods/gmm/no_constraint.hpp -
- normalize_labels.hpp.3
- Src/mlpack/core/data/normalize_labels.hpp -
- nothing_initializer.hpp.3
- Src/mlpack/methods/sparse_coding/nothing_initializer.hpp -
- ns_traversal_info.hpp.3
- Src/mlpack/methods/neighbor_search/ns_traversal_info.hpp -
- nstutorial.3
- Neighborsearch tutorial (k-nearest-neighbors)
- nulloutstream.hpp.3
- Src/mlpack/core/util/nulloutstream.hpp -
- nystroem_method.hpp.3
- Src/mlpack/methods/nystroem_method/nystroem_method.hpp -
- old_boost_test_definitions.hpp.3
- Src/mlpack/tests/old_boost_test_definitions.hpp -
- option.hpp.3
- Src/mlpack/core/util/option.hpp -
- ordered_selection.hpp.3
- Src/mlpack/methods/nystroem_method/ordered_selection.hpp -
- pca.hpp.3
- Src/mlpack/methods/pca/pca.hpp -
- perceptron.hpp.3
- Src/mlpack/methods/perceptron/perceptron.hpp -
- phi.hpp.3
- Src/mlpack/methods/gmm/phi.hpp -
- polynomial_kernel.hpp.3
- Src/mlpack/core/kernels/polynomial_kernel.hpp -
- positive_definite_constraint.hpp.3
- Src/mlpack/methods/gmm/positive_definite_constraint.hpp -
- prefixedoutstream.hpp.3
- Src/mlpack/core/util/prefixedoutstream.hpp -
- prereqs.hpp.3
- The core includes that mlpack expects; standard c++ includes and armadillo.
- pspectrum_string_kernel.hpp.3
- Src/mlpack/core/kernels/pspectrum_string_kernel.hpp -
- quic_svd.hpp.3
- Src/mlpack/methods/quic_svd/quic_svd.hpp -
- ra_query_stat.hpp.3
- Src/mlpack/methods/rann/ra_query_stat.hpp -
- ra_search.hpp.3
- Src/mlpack/methods/rann/ra_search.hpp -
- ra_search_rules.hpp.3
- Src/mlpack/methods/rann/ra_search_rules.hpp -
- ra_typedef.hpp.3
- Src/mlpack/methods/rann/ra_typedef.hpp -
- radical.hpp.3
- Src/mlpack/methods/radical/radical.hpp -
- random.hpp.3
- Miscellaneous math random-related routines.
- random_acol_init.hpp.3
- Src/mlpack/methods/amf/init_rules/random_acol_init.hpp -
- random_init.hpp.3
- Src/mlpack/methods/perceptron/initialization_methods/random_init.hpp -
- random_initializer.hpp.3
- Src/mlpack/methods/sparse_coding/random_initializer.hpp -
- random_partition.hpp.3
- Src/mlpack/methods/kmeans/random_partition.hpp -
- random_selection.hpp.3
- Src/mlpack/methods/nystroem_method/random_selection.hpp -
- range.hpp.3
- Definition of the range class, which represents a simple range with a lower and upper bound.
- range_search.hpp.3
- Src/mlpack/methods/range_search/range_search.hpp -
- range_search.txt.3
- Tutorial for how to use the rangesearch class.
- range_search_rules.hpp.3
- Src/mlpack/methods/range_search/range_search_rules.hpp -
- range_search_stat.hpp.3
- Src/mlpack/methods/range_search/range_search_stat.hpp -
- rectangle_tree.hpp.3
- Src/mlpack/core/tree/rectangle_tree.hpp -
- refined_start.hpp.3
- Src/mlpack/methods/kmeans/refined_start.hpp -
- regularized_svd.hpp.3
- Src/mlpack/methods/regularized_svd/regularized_svd.hpp -
- regularized_svd_function.hpp.3
- Src/mlpack/methods/regularized_svd/regularized_svd_function.hpp -
- round.hpp.3
- Src/mlpack/core/math/round.hpp -
- rstutorial.3
- Rangesearch tutorial (range_search)
- sa.hpp.3
- Src/mlpack/core/optimizers/sa/sa.hpp -
- sample.3
- Simple sample mlpack programs
- sample.hpp.3
- Doc/guide/sample.hpp -
- save.hpp.3
- Src/mlpack/core/data/save.hpp -
- save_restore_utility.hpp.3
- Src/mlpack/core/util/save_restore_utility.hpp -
- sfinae_utility.hpp.3
- Src/mlpack/core/util/sfinae_utility.hpp -
- sgd.hpp.3
- Src/mlpack/core/optimizers/sgd/sgd.hpp -
- simple_residue_termination.hpp.3
- Src/mlpack/methods/amf/termination_policies/simple_residue_termination.hpp -
- simple_tolerance_termination.hpp.3
- Src/mlpack/methods/amf/termination_policies/simple_tolerance_termination.hpp -
- simple_weight_update.hpp.3
- Src/mlpack/methods/perceptron/learning_policies/simple_weight_update.hpp -
- single_tree_traverser.hpp.3
- Src/mlpack/core/tree/cover_tree/single_tree_traverser.hpp -
- sparse_autoencoder.hpp.3
- Src/mlpack/methods/sparse_autoencoder/sparse_autoencoder.hpp -
- sparse_autoencoder_function.hpp.3
- Src/mlpack/methods/sparse_autoencoder/sparse_autoencoder_function.hpp -
- sparse_coding.hpp.3
- Src/mlpack/methods/sparse_coding/sparse_coding.hpp -
- spherical_kernel.hpp.3
- Src/mlpack/core/kernels/spherical_kernel.hpp -
- statistic.hpp.3
- Definition of the policy type for the statistic class.
- string_util.hpp.3
- Src/mlpack/core/util/string_util.hpp -
- svd_batch_learning.hpp.3
- Src/mlpack/methods/amf/update_rules/svd_batch_learning.hpp -
- svd_complete_incremental_learning.hpp.3
- Src/mlpack/methods/amf/update_rules/svd_complete_incremental_learning.hpp -
- svd_incomplete_incremental_learning.hpp.3
- Src/mlpack/methods/amf/update_rules/svd_incomplete_incremental_learning.hpp -
- test_function.hpp.3
- Src/mlpack/core/optimizers/sgd/test_function.hpp -
- timer.3
- Mlpack timers
- timer.hpp.3
- Doc/guide/timer.hpp -
- timers.hpp.3
- Src/mlpack/core/util/timers.hpp -
- traits.hpp.3
- Src/mlpack/core/tree/cover_tree/traits.hpp -
- traversal_info.hpp.3
- Src/mlpack/core/tree/traversal_info.hpp -
- tree_traits.hpp.3
- Src/mlpack/core/tree/tree_traits.hpp -
- triangular_kernel.hpp.3
- Src/mlpack/core/kernels/triangular_kernel.hpp -
- tutorials.3
- Tutorials
- tutorials.txt.3
- List of mlpack tutorials.
- typedef.hpp.3
- Src/mlpack/methods/neighbor_search/typedef.hpp -
- union_find.hpp.3
- Src/mlpack/methods/emst/union_find.hpp -
- unmap.hpp.3
- Src/mlpack/methods/neighbor_search/unmap.hpp -
- validation_RMSE_termination.hpp.3
- Src/mlpack/methods/amf/termination_policies/validation_rmse_termination.hpp -
- verinfo.3
- Mlpack version information
- version.hpp.3
- Doc/guide/version.hpp -
- zero_init.hpp.3
- Src/mlpack/methods/perceptron/initialization_methods/zero_init.hpp -