Man Pages in mlpack-doc

  1. Carta.tech
  2. Packages
  3. mlpack-doc
  • 380

    Section 3: Library calls

    CMakeLists.txt.3
    Src/mlpack/tests/cmakelists.txt -
    IsVector.3
    If value == true, then vectype is some sort of armadillo vector or subview.
    IsVector_ arma_Col_ eT _ _.3
    Isvector arma::col et -
    IsVector_ arma_Row_ eT _ _.3
    Isvector arma::row et -
    IsVector_ arma_SpCol_ eT _ _.3
    Isvector arma::spcol et -
    IsVector_ arma_SpRow_ eT _ _.3
    Isvector arma::sprow et -
    IsVector_ arma_SpSubview_ eT _ _.3
    Isvector arma::spsubview et -
    IsVector_ arma_subview_col_ eT _ _.3
    Isvector arma::subview_col et -
    IsVector_ arma_subview_row_ eT _ _.3
    Isvector arma::subview_row et -
    RASearch.3
    The rasearch class: this class provides a generic manner to perform rank-approximate search via random-sampling.
    TREE_EXPLANATION.txt.3
    Src/mlpack/core/tree/tree_explanation.txt -
    TraversalInfo.3
    The traversalinfo class holds traversal information which is used in dual-tree (and single-tree) traversals.
    allow_empty_clusters.hpp.3
    Src/mlpack/methods/kmeans/allow_empty_clusters.hpp -
    amf.hpp.3
    Src/mlpack/methods/amf/amf.hpp -
    arma_traits.hpp.3
    Src/mlpack/core/util/arma_traits.hpp -
    aug_lagrangian.hpp.3
    Src/mlpack/core/optimizers/aug_lagrangian/aug_lagrangian.hpp -
    aug_lagrangian_function.hpp.3
    Src/mlpack/core/optimizers/aug_lagrangian/aug_lagrangian_function.hpp -
    aug_lagrangian_test_functions.hpp.3
    Src/mlpack/core/optimizers/aug_lagrangian/aug_lagrangian_test_functions.hpp -
    ballbound.hpp.3
    Bounds that are useful for binary space partitioning trees.
    binary_space_tree.hpp.3
    Src/mlpack/core/tree/binary_space_tree.hpp -
    bounds.hpp.3
    Bounds that are useful for binary space partitioning trees.
    bug.3
    Bug list the counter variable is used in most cases to guarantee a unique global identifier for options declared using the param_*() macros. however, not all compilers have this support--most notably, gcc 4.3. in that case, the line macro is used as an attempt to get a unique global identifier, but collisions are still possible, and they produce bizarre error messages. see http://mlpack.org/trac/ticket/74 for more information. the counter variable is used in most cases to guarantee a unique global identifier for options declared using the param_*() macros. however, not all compilers have this support--most notably, gcc 4.3. in that case, the line macro is used as an attempt to get a unique global identifier, but collisions are still possible, and they produce bizarre error messages. see http://mlpack.org/trac/ticket/74 for more information. the counter variable is used in most cases to guarantee a unique global identifier for options declared using the param_*() macros. however, not all compilers have this support--most notably, gcc 4.3. in that case, the line macro is used as an attempt to get a unique global identifier, but collisions are still possible, and they produce bizarre error messages. see http://mlpack.org/trac/ticket/74 for more information. the counter variable is used in most cases to guarantee a unique global identifier for options declared using the param_*() macros. however, not all compilers have this support--most notably, gcc 4.3. in that case, the line macro is used as an attempt to get a unique global identifier, but collisions are still possible, and they produce bizarre error messages. see http://mlpack.org/trac/ticket/74 for more information. the counter variable is used in most cases to guarantee a unique global identifier for options declared using the param_*() macros. however, not all compilers have this support--most notably, gcc 4.3. in that case, the line macro is used as an attempt to get a unique global identifier, but collisions are still possible, and they produce bizarre error messages. see http://mlpack.org/trac/ticket/74 for more information. the counter variable is used in most cases to guarantee a unique global identifier for options declared using the param_*() macros. however, not all compilers have this support--most notably, gcc 4.3. in that case, the line macro is used as an attempt to get a unique global identifier, but collisions are still possible, and they produce bizarre error messages. see http://mlpack.org/trac/ticket/74 for more information. the counter variable is used in most cases to guarantee a unique global identifier for options declared using the param_*() macros. however, not all compilers have this support--most notably, gcc 4.3. in that case, the line macro is used as an attempt to get a unique global identifier, but collisions are still possible, and they produce bizarre error messages. see http://mlpack.org/trac/ticket/74 for more information. the counter variable is used in most cases to guarantee a unique global identifier for options declared using the param_*() macros. however, not all compilers have this support--most notably, gcc 4.3. in that case, the line macro is used as an attempt to get a unique global identifier, but collisions are still possible, and they produce bizarre error messages. see http://mlpack.org/trac/ticket/74 for more information. the counter variable is used in most cases to guarantee a unique global identifier for options declared using the param_*() macros. however, not all compilers have this support--most notably, gcc 4.3. in that case, the line macro is used as an attempt to get a unique global identifier, but collisions are still possible, and they produce bizarre error messages. see http://mlpack.org/trac/ticket/74 for more information. the counter variable is used in most cases to guarantee a unique global identifier for options declared using the param_*() macros. however, not all compilers have this support--most notably, gcc 4.3. in that case, the line macro is used as an attempt to get a unique global identifier, but collisions are still possible, and they produce bizarre error messages. see http://mlpack.org/trac/ticket/74 for more information. the counter variable is used in most cases to guarantee a unique global identifier for options declared using the param_*() macros. however, not all compilers have this support--most notably, gcc 4.3. in that case, the line macro is used as an attempt to get a unique global identifier, but collisions are still possible, and they produce bizarre error messages. see http://mlpack.org/trac/ticket/74 for more information. the counter variable is used in most cases to guarantee a unique global identifier for options declared using the param_*() macros. however, not all compilers have this support--most notably, gcc 4.3. in that case, the line macro is used as an attempt to get a unique global identifier, but collisions are still possible, and they produce bizarre error messages. see http://mlpack.org/trac/ticket/74 for more information.
    build.3
    Building mlpack
    build.hpp.3
    Doc/guide/build.hpp -
    cf.hpp.3
    Src/mlpack/methods/cf/cf.hpp -
    clamp.hpp.3
    Miscellaneous math clamping routines.
    cli.hpp.3
    Src/mlpack/core/util/cli.hpp -
    cli_deleter.hpp.3
    Src/mlpack/core/util/cli_deleter.hpp -
    complete_incremental_termination.hpp.3
    Src/mlpack/methods/amf/termination_policies/complete_incremental_termination.hpp -
    core.hpp.3
    Src/mlpack/core.hpp -
    cosine_distance.hpp.3
    Src/mlpack/core/kernels/cosine_distance.hpp -
    cosine_tree.hpp.3
    Src/mlpack/core/tree/cosine_tree/cosine_tree.hpp -
    cover_tree.hpp.3
    Src/mlpack/core/tree/cover_tree.hpp -
    data_3d_ind.txt.3
    Src/mlpack/tests/data/data_3d_ind.txt -
    data_3d_mixed.txt.3
    Src/mlpack/tests/data/data_3d_mixed.txt -
    data_dependent_random_initializer.hpp.3
    Src/mlpack/methods/sparse_coding/data_dependent_random_initializer.hpp -
    decision_stump.hpp.3
    Src/mlpack/methods/decision_stump/decision_stump.hpp -
    det.txt.3
    Tutorial for how to perform density estimation with density estimation trees (det).
    dettutorial.3
    Density estimation tree (det) tutorial
    diagonal_constraint.hpp.3
    Src/mlpack/methods/gmm/diagonal_constraint.hpp -
    discrete_distribution.hpp.3
    Src/mlpack/core/dists/discrete_distribution.hpp -
    dt_utils.hpp.3
    Src/mlpack/methods/det/dt_utils.hpp -
    dtb.hpp.3
    Src/mlpack/methods/emst/dtb.hpp -
    dtb_rules.hpp.3
    Src/mlpack/methods/emst/dtb_rules.hpp -
    dtb_stat.hpp.3
    Src/mlpack/methods/emst/dtb_stat.hpp -
    dtree.hpp.3
    Src/mlpack/methods/det/dtree.hpp -
    dual_tree_traverser.hpp.3
    Src/mlpack/core/tree/cover_tree/dual_tree_traverser.hpp -
    edge_pair.hpp.3
    Src/mlpack/methods/emst/edge_pair.hpp -
    eigenvalue_ratio_constraint.hpp.3
    Src/mlpack/methods/gmm/eigenvalue_ratio_constraint.hpp -
    em_fit.hpp.3
    Src/mlpack/methods/gmm/em_fit.hpp -
    emst.txt.3
    Tutorial for the euclidean minimum spanning tree algorithm.
    emst_tutorial.3
    Emst tutorial
    epanechnikov_kernel.hpp.3
    Src/mlpack/core/kernels/epanechnikov_kernel.hpp -
    example_kernel.hpp.3
    Src/mlpack/core/kernels/example_kernel.hpp -
    example_tree.hpp.3
    Src/mlpack/core/tree/example_tree.hpp -
    exponential_schedule.hpp.3
    Src/mlpack/core/optimizers/sa/exponential_schedule.hpp -
    fastmks.hpp.3
    Src/mlpack/methods/fastmks/fastmks.hpp -
    fastmks.txt.3
    Tutorial for how to use fastmks in mlpack.
    fastmks_rules.hpp.3
    Src/mlpack/methods/fastmks/fastmks_rules.hpp -
    fastmks_stat.hpp.3
    Src/mlpack/methods/fastmks/fastmks_stat.hpp -
    first_point_is_root.hpp.3
    Src/mlpack/core/tree/cover_tree/first_point_is_root.hpp -
    fmkstutorial.3
    Fast max-kernel search tutorial (fastmks)
    furthest_neighbor_sort.hpp.3
    Src/mlpack/methods/neighbor_search/sort_policies/furthest_neighbor_sort.hpp -
    gaussian_distribution.hpp.3
    Src/mlpack/core/dists/gaussian_distribution.hpp -
    gaussian_kernel.hpp.3
    Src/mlpack/core/kernels/gaussian_kernel.hpp -
    gmm.hpp.3
    Src/mlpack/methods/gmm/gmm.hpp -
    hmm.hpp.3
    Src/mlpack/methods/hmm/hmm.hpp -
    hmm_util.hpp.3
    Src/mlpack/methods/hmm/hmm_util.hpp -
    hrectbound.hpp.3
    Bounds that are useful for binary space partitioning trees.
    hyperbolic_tangent_kernel.hpp.3
    Src/mlpack/core/kernels/hyperbolic_tangent_kernel.hpp -
    incomplete_incremental_termination.hpp.3
    Src/mlpack/methods/amf/termination_policies/incomplete_incremental_termination.hpp -
    iodoc.3
    Mlpack input and output
    iodoc.hpp.3
    Doc/guide/iodoc.hpp -
    ip_metric.hpp.3
    Src/mlpack/core/metrics/ip_metric.hpp -
    iris.txt.3
    Src/mlpack/tests/data/iris.txt -
    iris_labels.txt.3
    Src/mlpack/tests/data/iris_labels.txt -
    kernel_pca.hpp.3
    Src/mlpack/methods/kernel_pca/kernel_pca.hpp -
    kernel_traits.hpp.3
    Src/mlpack/core/kernels/kernel_traits.hpp -
    kmeans.hpp.3
    Src/mlpack/methods/kmeans/kmeans.hpp -
    kmeans.txt.3
    Tutorial for how to use k-means in mlpack.
    kmeans_selection.hpp.3
    Src/mlpack/methods/nystroem_method/kmeans_selection.hpp -
    kmtutorial.3
    K-means tutorial (kmeans)
    laplace_distribution.hpp.3
    Src/mlpack/core/dists/laplace_distribution.hpp -
    laplacian_kernel.hpp.3
    Src/mlpack/core/kernels/laplacian_kernel.hpp -
    lars.hpp.3
    Src/mlpack/methods/lars/lars.hpp -
    lbfgs.hpp.3
    Src/mlpack/core/optimizers/lbfgs/lbfgs.hpp -
    lcc.hpp.3
    Src/mlpack/methods/local_coordinate_coding/lcc.hpp -
    lin_alg.hpp.3
    Src/mlpack/core/math/lin_alg.hpp -
    linear_kernel.hpp.3
    Src/mlpack/core/kernels/linear_kernel.hpp -
    linear_regression.hpp.3
    Src/mlpack/methods/linear_regression/linear_regression.hpp -
    linear_regression.txt.3
    Tutorial for how to use the linearregression class.
    lmetric.hpp.3
    Src/mlpack/core/metrics/lmetric.hpp -
    load.hpp.3
    Src/mlpack/core/data/load.hpp -
    log.hpp.3
    Src/mlpack/core/util/log.hpp -
    logistic_regression.hpp.3
    Src/mlpack/methods/logistic_regression/logistic_regression.hpp -
    logistic_regression_function.hpp.3
    Src/mlpack/methods/logistic_regression/logistic_regression_function.hpp -
    lrsdp.hpp.3
    Src/mlpack/core/optimizers/lrsdp/lrsdp.hpp -
    lrsdp_function.hpp.3
    Src/mlpack/core/optimizers/lrsdp/lrsdp_function.hpp -
    lrtutorial.3
    Linear/ridge regression tutorial (linear_regression)
    lsh_search.hpp.3
    Src/mlpack/methods/lsh/lsh_search.hpp -
    mahalanobis_distance.hpp.3
    Src/mlpack/core/metrics/mahalanobis_distance.hpp -
    matrices.3
    Matrices in mlpack
    matrices.hpp.3
    Doc/guide/matrices.hpp -
    max_variance_new_cluster.hpp.3
    Src/mlpack/methods/kmeans/max_variance_new_cluster.hpp -
    mean_split.hpp.3
    Src/mlpack/core/tree/binary_space_tree/mean_split.hpp -
    mlpack.3
    Linear algebra utility functions, generally performed on matrices or vectors.
    mlpack_CLI.3
    Parses the command line for parameters and holds user-specified parameters.
    mlpack_Log.3
    Provides a convenient way to give formatted output.
    mlpack_ParamData.3
    Aids in the extensibility of cli by focusing potential changes into one structure.
    mlpack_Timer.3
    The timer class provides a way for mlpack methods to be timed.
    mlpack_Timers.3
    Mlpack::timers -
    mlpack_amf.3
    Mlpack::amf -
    mlpack_amf_AMF.3
    This class implements amf (alternating matrix factorization) on the given matrix v.
    mlpack_amf_CompleteIncrementalTermination.3
    Mlpack::amf::completeincrementaltermination terminationpolicy -
    mlpack_amf_IncompleteIncrementalTermination.3
    Mlpack::amf::incompleteincrementaltermination terminationpolicy -
    mlpack_amf_NMFALSUpdate.3
    The alternating least square update rules of matrices w and h.
    mlpack_amf_NMFMultiplicativeDistanceUpdate.3
    The multiplicative distance update rules for matrices w and h.
    mlpack_amf_NMFMultiplicativeDivergenceUpdate.3
    Mlpack::amf::nmfmultiplicativedivergenceupdate -
    mlpack_amf_RandomAcolInitialization.3
    This class initializes the w matrix of the nmf algorithm by averaging p randomly chosen columns of v.
    mlpack_amf_RandomInitialization.3
    Mlpack::amf::randominitialization -
    mlpack_amf_SVDBatchLearning.3
    Mlpack::amf::svdbatchlearning -
    mlpack_amf_SVDCompleteIncrementalLearning.3
    Mlpack::amf::svdcompleteincrementallearning mattype -
    mlpack_amf_SVDCompleteIncrementalLearning_ arma_sp_mat _.3
    Mlpack::amf::svdcompleteincrementallearning arma::sp_mat -
    mlpack_amf_SVDIncompleteIncrementalLearning.3
    Mlpack::amf::svdincompleteincrementallearning -
    mlpack_amf_SimpleResidueTermination.3
    Mlpack::amf::simpleresiduetermination -
    mlpack_amf_SimpleToleranceTermination.3
    Mlpack::amf::simpletolerancetermination mattype -
    mlpack_amf_ValidationRMSETermination.3
    Mlpack::amf::validationrmsetermination mattype -
    mlpack_bound.3
    Mlpack::bound -
    mlpack_bound_BallBound.3
    Ball bound encloses a set of points at a specific distance (radius) from a specific point (center).
    mlpack_bound_HRectBound.3
    Hyper-rectangle bound for an l-metric.
    mlpack_cf.3
    Collaborative filtering.
    mlpack_cf_CF.3
    This class implements collaborative filtering (cf).
    mlpack_data.3
    Functions to load and save matrices.
    mlpack_decision_stump.3
    Mlpack::decision_stump -
    mlpack_decision_stump_DecisionStump.3
    This class implements a decision stump.
    mlpack_det.3
    Density estimation trees.
    mlpack_det_DTree.3
    A density estimation tree is similar to both a decision tree and a space partitioning tree (like a kd-tree).
    mlpack_distribution.3
    Probability distributions.
    mlpack_distribution_DiscreteDistribution.3
    A discrete distribution where the only observations are discrete observations.
    mlpack_distribution_GaussianDistribution.3
    A single multivariate gaussian distribution.
    mlpack_distribution_LaplaceDistribution.3
    The multivariate laplace distribution centered at 0 has pdf.
    mlpack_emst.3
    Euclidean minimum spanning trees.
    mlpack_emst_DTBRules.3
    Mlpack::emst::dtbrules metrictype, treetype -
    mlpack_emst_DTBStat.3
    A statistic for use with mlpack trees, which stores the upper bound on distance to nearest neighbors and the component which this node belongs to.
    mlpack_emst_DualTreeBoruvka.3
    Performs the mst calculation using the dual-tree boruvka algorithm, using any type of tree.
    mlpack_emst_DualTreeBoruvka_SortEdgesHelper.3
    For sorting the edge list after the computation.
    mlpack_emst_EdgePair.3
    An edge pair is simply two indices and a distance.
    mlpack_emst_UnionFind.3
    A union-find data structure.
    mlpack_fastmks.3
    Fast max-kernel search.
    mlpack_fastmks_FastMKS.3
    An implementation of fast exact max-kernel search.
    mlpack_fastmks_FastMKSRules.3
    The base case and pruning rules for fastmks (fast max-kernel search).
    mlpack_fastmks_FastMKSStat.3
    The statistic used in trees with fastmks.
    mlpack_gmm.3
    Gaussian mixture models.
    mlpack_gmm_DiagonalConstraint.3
    Force a covariance matrix to be diagonal.
    mlpack_gmm_EMFit.3
    This class contains methods which can fit a gmm to observations using the em algorithm.
    mlpack_gmm_EigenvalueRatioConstraint.3
    Given a vector of eigenvalue ratios, ensure that the covariance matrix always has those eigenvalue ratios.
    mlpack_gmm_GMM.3
    A gaussian mixture model (gmm).
    mlpack_gmm_NoConstraint.3
    This class enforces no constraint on the covariance matrix.
    mlpack_gmm_PositiveDefiniteConstraint.3
    Given a covariance matrix, force the matrix to be positive definite.
    mlpack_hmm.3
    Hidden markov models.
    mlpack_hmm_HMM.3
    A class that represents a hidden markov model with an arbitrary type of emission distribution.
    mlpack_kernel.3
    Kernel functions.
    mlpack_kernel_CosineDistance.3
    The cosine distance (or cosine similarity).
    mlpack_kernel_EpanechnikovKernel.3
    The epanechnikov kernel, defined as.
    mlpack_kernel_ExampleKernel.3
    An example kernel function.
    mlpack_kernel_GaussianKernel.3
    The standard gaussian kernel.
    mlpack_kernel_HyperbolicTangentKernel.3
    Hyperbolic tangent kernel.
    mlpack_kernel_KMeansSelection.3
    Mlpack::kernel::kmeansselection clusteringtype -
    mlpack_kernel_KernelTraits.3
    This is a template class that can provide information about various kernels.
    mlpack_kernel_KernelTraits_ CosineDistance _.3
    Kernel traits for the cosine distance.
    mlpack_kernel_KernelTraits_ EpanechnikovKernel _.3
    Kernel traits for the epanechnikov kernel.
    mlpack_kernel_KernelTraits_ GaussianKernel _.3
    Kernel traits for the gaussian kernel.
    mlpack_kernel_KernelTraits_ LaplacianKernel _.3
    Kernel traits of the laplacian kernel.
    mlpack_kernel_KernelTraits_ SphericalKernel _.3
    Kernel traits for the spherical kernel.
    mlpack_kernel_KernelTraits_ TriangularKernel _.3
    Kernel traits for the triangular kernel.
    mlpack_kernel_LaplacianKernel.3
    The standard laplacian kernel.
    mlpack_kernel_LinearKernel.3
    The simple linear kernel (dot product).
    mlpack_kernel_NystroemMethod.3
    Mlpack::kernel::nystroemmethod kerneltype, pointselectionpolicy -
    mlpack_kernel_OrderedSelection.3
    Mlpack::kernel::orderedselection -
    mlpack_kernel_PSpectrumStringKernel.3
    The p-spectrum string kernel.
    mlpack_kernel_PolynomialKernel.3
    The simple polynomial kernel.
    mlpack_kernel_RandomSelection.3
    Mlpack::kernel::randomselection -
    mlpack_kernel_SphericalKernel.3
    Mlpack::kernel::sphericalkernel -
    mlpack_kernel_TriangularKernel.3
    The trivially simple triangular kernel, defined by.
    mlpack_kmeans.3
    K-means clustering.
    mlpack_kmeans_AllowEmptyClusters.3
    Policy which allows k-means to create empty clusters without any error being reported.
    mlpack_kmeans_KMeans.3
    This class implements k-means clustering.
    mlpack_kmeans_MaxVarianceNewCluster.3
    When an empty cluster is detected, this class takes the point furthest from the centroid of the cluster with maximum variance as a new cluster.
    mlpack_kmeans_RandomPartition.3
    A very simple partitioner which partitions the data randomly into the number of desired clusters.
    mlpack_kmeans_RefinedStart.3
    A refined approach for choosing initial points for k-means clustering.
    mlpack_kpca.3
    Mlpack::kpca -
    mlpack_kpca_KernelPCA.3
    This class performs kernel principal components analysis (kernel pca), for a given kernel.
    mlpack_kpca_NaiveKernelRule.3
    Mlpack::kpca::naivekernelrule kerneltype -
    mlpack_kpca_NystroemKernelRule.3
    Mlpack::kpca::nystroemkernelrule kerneltype, pointselectionpolicy -
    mlpack_lcc.3
    Mlpack::lcc -
    mlpack_lcc_LocalCoordinateCoding.3
    An implementation of local coordinate coding (lcc) that codes data which approximately lives on a manifold using a variation of l1-norm regularized sparse coding; in lcc, the penalty on the absolute value of each point's coefficient for each atom is weighted by the squared distance of that point to that atom.
    mlpack_math.3
    Miscellaneous math routines.
    mlpack_math_Range.3
    Simple real-valued range.
    mlpack_metric.3
    Mlpack::metric -
    mlpack_metric_IPMetric.3
    Mlpack::metric::ipmetric kerneltype -
    mlpack_metric_LMetric.3
    The l_p metric for arbitrary integer p, with an option to take the root.
    mlpack_metric_MahalanobisDistance.3
    The mahalanobis distance, which is essentially a stretched euclidean distance.
    mlpack_mvu.3
    Mlpack::mvu -
    mlpack_mvu_MVU.3
    The mvu class is meant to provide a good abstraction for users.
    mlpack_naive_bayes.3
    The naive bayes classifier.
    mlpack_naive_bayes_NaiveBayesClassifier.3
    The simple naive bayes classifier.
    mlpack_nca.3
    Neighborhood components analysis.
    mlpack_nca_NCA.3
    An implementation of neighborhood components analysis, both a linear dimensionality reduction technique and a distance learning technique.
    mlpack_nca_SoftmaxErrorFunction.3
    The 'softmax' stochastic neighbor assignment probability function.
    mlpack_neighbor.3
    Neighbor-search routines.
    mlpack_neighbor_FurthestNeighborSort.3
    This class implements the necessary methods for the sortpolicy template parameter of the neighborsearch class.
    mlpack_neighbor_LSHSearch.3
    The lshsearch class -- this class builds a hash on the reference set and uses this hash to compute the distance-approximate nearest-neighbors of the given queries.
    mlpack_neighbor_NearestNeighborSort.3
    This class implements the necessary methods for the sortpolicy template parameter of the neighborsearch class.
    mlpack_neighbor_NeighborSearch.3
    The neighborsearch class is a template class for performing distance-based neighbor searches.
    mlpack_neighbor_NeighborSearchRules.3
    Mlpack::neighbor::neighborsearchrules sortpolicy, metrictype, treetype -
    mlpack_neighbor_NeighborSearchStat.3
    Extra data for each node in the tree.
    mlpack_neighbor_NeighborSearchTraversalInfo.3
    Traversal information for neighborsearch.
    mlpack_neighbor_RASearchRules.3
    Mlpack::neighbor::rasearchrules sortpolicy, metrictype, treetype -
    mlpack_nn.3
    Mlpack::nn -
    mlpack_nn_SparseAutoencoder.3
    A sparse autoencoder is a neural network whose aim to learn compressed representations of the data, typically for dimensionality reduction, with a constraint on the activity of the neurons in the network.
    mlpack_nn_SparseAutoencoderFunction.3
    This is a class for the sparse autoencoder objective function.
    mlpack_optimization.3
    Mlpack::optimization -
    mlpack_optimization_AugLagrangian.3
    The auglagrangian class implements the augmented lagrangian method of optimization.
    mlpack_optimization_AugLagrangianFunction.3
    This is a utility class used by auglagrangian, meant to wrap a lagrangianfunction into a function usable by a simple optimizer like l-bfgs.
    mlpack_optimization_AugLagrangianTestFunction.3
    This function is taken from 'practical mathematical optimization' (snyman), section 5.3.8 ('application of the augmented lagrangian method').
    mlpack_optimization_ExponentialSchedule.3
    The exponential cooling schedule cools the temperature t at every step according to the equation.
    mlpack_optimization_GockenbachFunction.3
    This function is taken from m.
    mlpack_optimization_LRSDP.3
    Lrsdp is the implementation of monteiro and burer's formulation of low-rank semidefinite programs (lr-sdp).
    mlpack_optimization_LRSDPFunction.3
    The objective function that lrsdp is trying to optimize.
    mlpack_optimization_L_BFGS.3
    The generic l-bfgs optimizer, which uses a back-tracking line search algorithm to minimize a function.
    mlpack_optimization_LovaszThetaSDP.3
    This function is the lovasz-theta semidefinite program, as implemented in the following paper:
    mlpack_optimization_SA.3
    Simulated annealing is an stochastic optimization algorithm which is able to deliver near-optimal results quickly without knowing the gradient of the function being optimized.
    mlpack_optimization_SGD.3
    Stochastic gradient descent is a technique for minimizing a function which can be expressed as a sum of other functions.
    mlpack_optimization_test.3
    Mlpack::optimization::test -
    mlpack_optimization_test_RosenbrockWoodFunction.3
    The generalized rosenbrock function in 4 dimensions with the wood function in four dimensions.
    mlpack_optimization_test_SGDTestFunction.3
    Very, very simple test function which is the composite of three other functions.
    mlpack_pca.3
    Mlpack::pca -
    mlpack_pca_PCA.3
    This class implements principal components analysis (pca).
    mlpack_perceptron.3
    Mlpack::perceptron -
    mlpack_perceptron_Perceptron.3
    This class implements a simple perceptron (i.e., a single layer neural network).
    mlpack_perceptron_RandomInitialization.3
    This class is used to initialize weights for the weightvectors matrix in a random manner.
    mlpack_perceptron_SimpleWeightUpdate.3
    Mlpack::perceptron::simpleweightupdate -
    mlpack_perceptron_ZeroInitialization.3
    This class is used to initialize the matrix weightvectors to zero.
    mlpack_radical.3
    Mlpack::radical -
    mlpack_radical_Radical.3
    An implementation of radical, an algorithm for independent component analysis (ica).
    mlpack_range.3
    Range-search routines.
    mlpack_range_RangeSearch.3
    The rangesearch class is a template class for performing range searches.
    mlpack_range_RangeSearchRules.3
    Mlpack::range::rangesearchrules metrictype, treetype -
    mlpack_range_RangeSearchStat.3
    Statistic class for rangesearch, to be set to the statistictype of the tree type that range search is being performed with.
    mlpack_regression.3
    Regression methods.
    mlpack_regression_LARS.3
    An implementation of lars, a stage-wise homotopy-based algorithm for l1-regularized linear regression (lasso) and l1+l2 regularized linear regression (elastic net).
    mlpack_regression_LinearRegression.3
    A simple linear regression algorithm using ordinary least squares.
    mlpack_regression_LogisticRegression.3
    Mlpack::regression::logisticregression optimizertype -
    mlpack_regression_LogisticRegressionFunction.3
    The log-likelihood function for the logistic regression objective function.
    mlpack_sparse_coding.3
    Mlpack::sparse_coding -
    mlpack_sparse_coding_DataDependentRandomInitializer.3
    A data-dependent random dictionary initializer for sparsecoding.
    mlpack_sparse_coding_NothingInitializer.3
    A dictionaryinitializer for sparsecoding which does not initialize anything; it is useful for when the dictionary is already known and will be set with sparsecoding::dictionary().
    mlpack_sparse_coding_RandomInitializer.3
    A dictionaryinitializer for use with the sparsecoding class.
    mlpack_sparse_coding_SparseCoding.3
    An implementation of sparse coding with dictionary learning that achieves sparsity via an l1-norm regularizer on the codes (lasso) or an (l1+l2)-norm regularizer on the codes (the elastic net).
    mlpack_svd.3
    Mlpack::svd -
    mlpack_svd_QUIC_SVD.3
    Mlpack::svd::quic_svd -
    mlpack_svd_RegularizedSVD.3
    Mlpack::svd::regularizedsvd optimizertype -
    mlpack_svd_RegularizedSVDFunction.3
    Mlpack::svd::regularizedsvdfunction -
    mlpack_tree.3
    Trees and tree-building procedures.
    mlpack_tree_BinarySpaceTree.3
    A binary space partitioning tree, such as a kd-tree or a ball tree.
    mlpack_tree_BinarySpaceTree_DualTreeTraverser.3
    A dual-tree traverser for binary space trees; see dual_tree_traverser.hpp.
    mlpack_tree_BinarySpaceTree_SingleTreeTraverser.3
    A single-tree traverser for binary space trees; see single_tree_traverser.hpp for implementation.
    mlpack_tree_CompareCosineNode.3
    Mlpack::tree::comparecosinenode -
    mlpack_tree_CosineTree.3
    Mlpack::tree::cosinetree -
    mlpack_tree_CoverTree.3
    A cover tree is a tree specifically designed to speed up nearest-neighbor computation in high-dimensional spaces.
    mlpack_tree_CoverTree_DualTreeTraverser.3
    A dual-tree cover tree traverser; see dual_tree_traverser.hpp.
    mlpack_tree_CoverTree_DualTreeTraverser_DualCoverTreeMapEntry.3
    Struct used for traversal.
    mlpack_tree_CoverTree_SingleTreeTraverser.3
    A single-tree cover tree traverser; see single_tree_traverser.hpp for implementation.
    mlpack_tree_EmptyStatistic.3
    Empty statistic if you are not interested in storing statistics in your tree.
    mlpack_tree_ExampleTree.3
    This is not an actual space tree but instead an example tree that exists to show and document all the functions that mlpack trees must implement.
    mlpack_tree_FirstPointIsRoot.3
    This class is meant to be used as a choice for the policy class rootpointpolicy of the covertree class.
    mlpack_tree_MRKDStatistic.3
    Statistic for multi-resolution kd-trees.
    mlpack_tree_MeanSplit.3
    A binary space partitioning tree node is split into its left and right child.
    mlpack_tree_TreeTraits.3
    The treetraits class provides compile-time information on the characteristics of a given tree type.
    mlpack_tree_TreeTraits_ BinarySpaceTree_ BoundType, StatisticType, MatType _ _.3
    This is a specialization of the treetype class to the binaryspacetree tree type.
    mlpack_tree_TreeTraits_ CoverTree_ MetricType, RootPointPolicy, StatisticType _ _.3
    The specialization of the treetraits class for the covertree tree type.
    mlpack_util.3
    Mlpack::util -
    mlpack_util_CLIDeleter.3
    Extremely simple class whose only job is to delete the existing cli object at the end of execution.
    mlpack_util_NullOutStream.3
    Used for log::debug when not compiled with debugging symbols.
    mlpack_util_Option.3
    A static object whose constructor registers a parameter with the cli class.
    mlpack_util_PrefixedOutStream.3
    Allows us to output to an ostream with a prefix at the beginning of each line, in the same way we would output to cout or cerr.
    mlpack_util_ProgramDoc.3
    A static object whose constructor registers program documentation with the cli class.
    mlpack_util_SaveRestoreUtility.3
    Mlpack::util::saverestoreutility -
    mrkd_statistic.hpp.3
    Src/mlpack/core/tree/mrkd_statistic.hpp -
    mvu.hpp.3
    Src/mlpack/methods/mvu/mvu.hpp -
    naive_bayes_classifier.hpp.3
    Src/mlpack/methods/naive_bayes/naive_bayes_classifier.hpp -
    naive_method.hpp.3
    Src/mlpack/methods/kernel_pca/kernel_rules/naive_method.hpp -
    nca.hpp.3
    Src/mlpack/methods/nca/nca.hpp -
    nca_softmax_error_function.hpp.3
    Src/mlpack/methods/nca/nca_softmax_error_function.hpp -
    nearest_neighbor_sort.hpp.3
    Src/mlpack/methods/neighbor_search/sort_policies/nearest_neighbor_sort.hpp -
    neighbor_search.hpp.3
    Src/mlpack/methods/neighbor_search/neighbor_search.hpp -
    neighbor_search.txt.3
    Tutorial for how to use the neighborsearch class.
    neighbor_search_rules.hpp.3
    Src/mlpack/methods/neighbor_search/neighbor_search_rules.hpp -
    neighbor_search_stat.hpp.3
    Src/mlpack/methods/neighbor_search/neighbor_search_stat.hpp -
    nmf_als.hpp.3
    Src/mlpack/methods/amf/update_rules/nmf_als.hpp -
    nmf_mult_dist.hpp.3
    Src/mlpack/methods/amf/update_rules/nmf_mult_dist.hpp -
    nmf_mult_div.hpp.3
    Src/mlpack/methods/amf/update_rules/nmf_mult_div.hpp -
    no_constraint.hpp.3
    Src/mlpack/methods/gmm/no_constraint.hpp -
    normalize_labels.hpp.3
    Src/mlpack/core/data/normalize_labels.hpp -
    nothing_initializer.hpp.3
    Src/mlpack/methods/sparse_coding/nothing_initializer.hpp -
    ns_traversal_info.hpp.3
    Src/mlpack/methods/neighbor_search/ns_traversal_info.hpp -
    nstutorial.3
    Neighborsearch tutorial (k-nearest-neighbors)
    nulloutstream.hpp.3
    Src/mlpack/core/util/nulloutstream.hpp -
    nystroem_method.hpp.3
    Src/mlpack/methods/nystroem_method/nystroem_method.hpp -
    old_boost_test_definitions.hpp.3
    Src/mlpack/tests/old_boost_test_definitions.hpp -
    option.hpp.3
    Src/mlpack/core/util/option.hpp -
    ordered_selection.hpp.3
    Src/mlpack/methods/nystroem_method/ordered_selection.hpp -
    pca.hpp.3
    Src/mlpack/methods/pca/pca.hpp -
    perceptron.hpp.3
    Src/mlpack/methods/perceptron/perceptron.hpp -
    phi.hpp.3
    Src/mlpack/methods/gmm/phi.hpp -
    polynomial_kernel.hpp.3
    Src/mlpack/core/kernels/polynomial_kernel.hpp -
    positive_definite_constraint.hpp.3
    Src/mlpack/methods/gmm/positive_definite_constraint.hpp -
    prefixedoutstream.hpp.3
    Src/mlpack/core/util/prefixedoutstream.hpp -
    prereqs.hpp.3
    The core includes that mlpack expects; standard c++ includes and armadillo.
    pspectrum_string_kernel.hpp.3
    Src/mlpack/core/kernels/pspectrum_string_kernel.hpp -
    quic_svd.hpp.3
    Src/mlpack/methods/quic_svd/quic_svd.hpp -
    ra_query_stat.hpp.3
    Src/mlpack/methods/rann/ra_query_stat.hpp -
    ra_search.hpp.3
    Src/mlpack/methods/rann/ra_search.hpp -
    ra_search_rules.hpp.3
    Src/mlpack/methods/rann/ra_search_rules.hpp -
    ra_typedef.hpp.3
    Src/mlpack/methods/rann/ra_typedef.hpp -
    radical.hpp.3
    Src/mlpack/methods/radical/radical.hpp -
    random.hpp.3
    Miscellaneous math random-related routines.
    random_acol_init.hpp.3
    Src/mlpack/methods/amf/init_rules/random_acol_init.hpp -
    random_init.hpp.3
    Src/mlpack/methods/perceptron/initialization_methods/random_init.hpp -
    random_initializer.hpp.3
    Src/mlpack/methods/sparse_coding/random_initializer.hpp -
    random_partition.hpp.3
    Src/mlpack/methods/kmeans/random_partition.hpp -
    random_selection.hpp.3
    Src/mlpack/methods/nystroem_method/random_selection.hpp -
    range.hpp.3
    Definition of the range class, which represents a simple range with a lower and upper bound.
    range_search.hpp.3
    Src/mlpack/methods/range_search/range_search.hpp -
    range_search.txt.3
    Tutorial for how to use the rangesearch class.
    range_search_rules.hpp.3
    Src/mlpack/methods/range_search/range_search_rules.hpp -
    range_search_stat.hpp.3
    Src/mlpack/methods/range_search/range_search_stat.hpp -
    rectangle_tree.hpp.3
    Src/mlpack/core/tree/rectangle_tree.hpp -
    refined_start.hpp.3
    Src/mlpack/methods/kmeans/refined_start.hpp -
    regularized_svd.hpp.3
    Src/mlpack/methods/regularized_svd/regularized_svd.hpp -
    regularized_svd_function.hpp.3
    Src/mlpack/methods/regularized_svd/regularized_svd_function.hpp -
    round.hpp.3
    Src/mlpack/core/math/round.hpp -
    rstutorial.3
    Rangesearch tutorial (range_search)
    sa.hpp.3
    Src/mlpack/core/optimizers/sa/sa.hpp -
    sample.3
    Simple sample mlpack programs
    sample.hpp.3
    Doc/guide/sample.hpp -
    save.hpp.3
    Src/mlpack/core/data/save.hpp -
    save_restore_utility.hpp.3
    Src/mlpack/core/util/save_restore_utility.hpp -
    sfinae_utility.hpp.3
    Src/mlpack/core/util/sfinae_utility.hpp -
    sgd.hpp.3
    Src/mlpack/core/optimizers/sgd/sgd.hpp -
    simple_residue_termination.hpp.3
    Src/mlpack/methods/amf/termination_policies/simple_residue_termination.hpp -
    simple_tolerance_termination.hpp.3
    Src/mlpack/methods/amf/termination_policies/simple_tolerance_termination.hpp -
    simple_weight_update.hpp.3
    Src/mlpack/methods/perceptron/learning_policies/simple_weight_update.hpp -
    single_tree_traverser.hpp.3
    Src/mlpack/core/tree/cover_tree/single_tree_traverser.hpp -
    sparse_autoencoder.hpp.3
    Src/mlpack/methods/sparse_autoencoder/sparse_autoencoder.hpp -
    sparse_autoencoder_function.hpp.3
    Src/mlpack/methods/sparse_autoencoder/sparse_autoencoder_function.hpp -
    sparse_coding.hpp.3
    Src/mlpack/methods/sparse_coding/sparse_coding.hpp -
    spherical_kernel.hpp.3
    Src/mlpack/core/kernels/spherical_kernel.hpp -
    statistic.hpp.3
    Definition of the policy type for the statistic class.
    string_util.hpp.3
    Src/mlpack/core/util/string_util.hpp -
    svd_batch_learning.hpp.3
    Src/mlpack/methods/amf/update_rules/svd_batch_learning.hpp -
    svd_complete_incremental_learning.hpp.3
    Src/mlpack/methods/amf/update_rules/svd_complete_incremental_learning.hpp -
    svd_incomplete_incremental_learning.hpp.3
    Src/mlpack/methods/amf/update_rules/svd_incomplete_incremental_learning.hpp -
    test_function.hpp.3
    Src/mlpack/core/optimizers/sgd/test_function.hpp -
    timer.3
    Mlpack timers
    timer.hpp.3
    Doc/guide/timer.hpp -
    timers.hpp.3
    Src/mlpack/core/util/timers.hpp -
    traits.hpp.3
    Src/mlpack/core/tree/cover_tree/traits.hpp -
    traversal_info.hpp.3
    Src/mlpack/core/tree/traversal_info.hpp -
    tree_traits.hpp.3
    Src/mlpack/core/tree/tree_traits.hpp -
    triangular_kernel.hpp.3
    Src/mlpack/core/kernels/triangular_kernel.hpp -
    tutorials.3
    Tutorials
    tutorials.txt.3
    List of mlpack tutorials.
    typedef.hpp.3
    Src/mlpack/methods/neighbor_search/typedef.hpp -
    union_find.hpp.3
    Src/mlpack/methods/emst/union_find.hpp -
    unmap.hpp.3
    Src/mlpack/methods/neighbor_search/unmap.hpp -
    validation_RMSE_termination.hpp.3
    Src/mlpack/methods/amf/termination_policies/validation_rmse_termination.hpp -
    verinfo.3
    Mlpack version information
    version.hpp.3
    Doc/guide/version.hpp -
    zero_init.hpp.3
    Src/mlpack/methods/perceptron/initialization_methods/zero_init.hpp -