A simple linear regression algorithm using ordinary least squares.
LinearRegression (const arma::mat &predictors, const arma::vec &responses, const double lambda=0)
Creates the model. LinearRegression (const std::string &filename)
Initialize the model from a file. LinearRegression (const LinearRegression &linearRegression)
Copy constructor. LinearRegression ()
Empty constructor. double ComputeError (const arma::mat &points, const arma::vec &responses) const
Calculate the L2 squared error on the given predictors and responses using this linear regression model. double Lambda () const
Return the Tikhonov regularization parameter for ridge regression. double & Lambda ()
Modify the Tikhonov regularization parameter for ridge regression. const arma::vec & Parameters () const
Return the parameters (the b vector). arma::vec & Parameters ()
Modify the parameters (the b vector). void Predict (const arma::mat &points, arma::vec &predictions) const
Calculate y_i for each data point in points. std::string ToString () const
double lambda
The Tikhonov regularization parameter for ridge regression (0 for linear regression). arma::vec parameters
The calculated B.
A simple linear regression algorithm using ordinary least squares.
Optionally, this class can perform ridge regression, if the lambda parameter is set to a number greater than zero.
Definition at line 35 of file linear_regression.hpp.
Creates the model.
Parameters:
predictors X, matrix of data points to create B with.
responses y, the measured data for each point in X
Initialize the model from a file.
Parameters:
filename the name of the file to load the model from.
Copy constructor.
Parameters:
linearRegression the other instance to copy parameters from.
Empty constructor.
Definition at line 65 of file linear_regression.hpp.
Calculate the L2 squared error on the given predictors and responses using this linear regression model. This calculation returns
\[ (1 / n) * \| y - X B \|^2_2 \].PP where $ y $ is the responses vector, $ X $ is the matrix of predictors, and $ B $ is the parameters of the trained linear regression model.
As this number decreases to 0, the linear regression fit is better.
Parameters:
predictors Matrix of predictors (X).
responses Vector of responses (y).
Return the Tikhonov regularization parameter for ridge regression.
Definition at line 101 of file linear_regression.hpp.
References lambda.
Modify the Tikhonov regularization parameter for ridge regression.
Definition at line 103 of file linear_regression.hpp.
References lambda.
Return the parameters (the b vector).
Definition at line 96 of file linear_regression.hpp.
References parameters.
Modify the parameters (the b vector).
Definition at line 98 of file linear_regression.hpp.
References parameters.
Calculate y_i for each data point in points.
Parameters:
points the data points to calculate with.
predictions y, will contain calculated values on completion.
The Tikhonov regularization parameter for ridge regression (0 for linear regression).
Definition at line 119 of file linear_regression.hpp.
Referenced by Lambda().
The calculated B. Initialized and filled by constructor to hold the least squares solution.
Definition at line 113 of file linear_regression.hpp.
Referenced by Parameters().
Generated automatically by Doxygen for MLPACK from the source code.