SYNOPSIS

Public Member Functions

NystroemMethod (const arma::mat &data, KernelType &kernel, const size_t rank)

Create the NystroemMethod object. void Apply (arma::mat &output)

Apply the low-rank factorization to obtain an output matrix G such that K' = G * G^T. void GetKernelMatrix (const arma::mat *data, arma::mat &miniKernel, arma::mat &semiKernel)

Construct the kernel matrix with matrix that contains the selected points. void GetKernelMatrix (const arma::Col< size_t > &selectedPoints, arma::mat &miniKernel, arma::mat &semiKernel)

Construct the kernel matrix with the selected points.

Private Attributes

const arma::mat & data

The reference dataset. KernelType & kernel

The locally stored kernel, if it is necessary. const size_t rank

Rank used for matrix approximation.

Detailed Description

template<typename KernelType, typename PointSelectionPolicy = KMeansSelection<>>class mlpack::kernel::NystroemMethod< KernelType, PointSelectionPolicy >

Definition at line 38 of file nystroem_method.hpp.

Constructor & Destructor Documentation

template<typename KernelType, typename PointSelectionPolicy = KMeansSelection<>> \fBmlpack::kernel::NystroemMethod\fP< KernelType, PointSelectionPolicy >::\fBNystroemMethod\fP (const arma::mat &data, KernelType &kernel, const size_trank)

Create the NystroemMethod object. The constructor here does not really do anything.

Parameters:

data Data matrix.

kernel Kernel to be used for computation.

rank Rank to be used for matrix approximation.

Member Function Documentation

template<typename KernelType, typename PointSelectionPolicy = KMeansSelection<>> void \fBmlpack::kernel::NystroemMethod\fP< KernelType, PointSelectionPolicy >::Apply (arma::mat &output)

Apply the low-rank factorization to obtain an output matrix G such that K' = G * G^T.

Parameters:

output Matrix to store kernel approximation into.

Referenced by mlpack::kpca::NystroemKernelRule< KernelType, PointSelectionPolicy >::ApplyKernelMatrix().

template<typename KernelType, typename PointSelectionPolicy = KMeansSelection<>> void \fBmlpack::kernel::NystroemMethod\fP< KernelType, PointSelectionPolicy >::GetKernelMatrix (const arma::mat *data, arma::mat &miniKernel, arma::mat &semiKernel)

Construct the kernel matrix with matrix that contains the selected points.

Parameters:

data Data matrix pointer.

miniKernel to store the constructed mini-kernel matrix in.

miniKernel to store the constructed semi-kernel matrix in.

template<typename KernelType, typename PointSelectionPolicy = KMeansSelection<>> void \fBmlpack::kernel::NystroemMethod\fP< KernelType, PointSelectionPolicy >::GetKernelMatrix (const arma::Col< size_t > &selectedPoints, arma::mat &miniKernel, arma::mat &semiKernel)

Construct the kernel matrix with the selected points.

Parameters:

points Indices of selected points.

miniKernel to store the constructed mini-kernel matrix in.

miniKernel to store the constructed semi-kernel matrix in.

Member Data Documentation

template<typename KernelType, typename PointSelectionPolicy = KMeansSelection<>> const arma::mat& \fBmlpack::kernel::NystroemMethod\fP< KernelType, PointSelectionPolicy >::data\fC [private]\fP

The reference dataset.

Definition at line 83 of file nystroem_method.hpp.

template<typename KernelType, typename PointSelectionPolicy = KMeansSelection<>> KernelType& \fBmlpack::kernel::NystroemMethod\fP< KernelType, PointSelectionPolicy >::kernel\fC [private]\fP

The locally stored kernel, if it is necessary.

Definition at line 85 of file nystroem_method.hpp.

template<typename KernelType, typename PointSelectionPolicy = KMeansSelection<>> const size_t \fBmlpack::kernel::NystroemMethod\fP< KernelType, PointSelectionPolicy >::rank\fC [private]\fP

Rank used for matrix approximation.

Definition at line 87 of file nystroem_method.hpp.

Author

Generated automatically by Doxygen for MLPACK from the source code.