A sparse autoencoder is a neural network whose aim to learn compressed representations of the data, typically for dimensionality reduction, with a constraint on the activity of the neurons in the network.
SparseAutoencoder (const arma::mat &data, const size_t visibleSize, const size_t hiddenSize, const double lambda=0.0001, const double beta=3, const double rho=0.01)
Construct the sparse autoencoder model with the given training data. SparseAutoencoder (OptimizerType< SparseAutoencoderFunction > &optimizer)
Construct the sparse autoencoder model with the given training data. void Beta (const double b)
Sets the KL divergence parameter. double Beta () const
Gets the KL divergence parameter. void GetNewFeatures (arma::mat &data, arma::mat &features)
Transforms the provided data into the representation learned by the sparse autoencoder. void HiddenSize (const size_t hidden)
Sets size of the hidden layer. size_t HiddenSize () const
Gets the size of the hidden layer. void Lambda (const double l)
Sets the L2-regularization parameter. double Lambda () const
Gets the L2-regularization parameter. void Rho (const double r)
Sets the sparsity parameter. double Rho () const
Gets the sparsity parameter. void Sigmoid (const arma::mat &x, arma::mat &output) const
Returns the elementwise sigmoid of the passed matrix, where the sigmoid function of a real number 'x' is [1 / (1 + exp(-x))]. void VisibleSize (const size_t visible)
Sets size of the visible layer. size_t VisibleSize () const
Gets size of the visible layer.
double beta
KL divergence parameter. size_t hiddenSize
Size of the hidden layer. double lambda
L2-regularization parameter. arma::mat parameters
Parameters after optimization. double rho
Sparsity parameter. size_t visibleSize
Size of the visible layer.
A sparse autoencoder is a neural network whose aim to learn compressed representations of the data, typically for dimensionality reduction, with a constraint on the activity of the neurons in the network.
Sparse autoencoders can be stacked together to learn a hierarchy of features, which provide a better representation of the data for classification. This is a method used in the recently developed field of deep learning. More technical details about the model can be found on the following webpage:
http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial
An example of how to use the interface is shown below:
arma::mat data; // Data matrix. const size_t vSize = 64; // Size of visible layer, depends on the data. const size_t hSize = 25; // Size of hidden layer, depends on requirements. // Train the model using default options. SparseAutoencoder encoder1(data, vSize, hSize); const size_t numBasis = 5; // Parameter required for L-BFGS algorithm. const size_t numIterations = 100; // Maximum number of iterations. // Use an instantiated optimizer for the training. SparseAutoencoderFunction saf(data, vSize, hSize); L_BFGS<SparseAutoencoderFunction> optimizer(saf, numBasis, numIterations); SparseAutoencoder<L_BFGS> encoder2(optimizer); arma::mat features1, features2; // Matrices for storing new representations. // Get new representations from the trained models. encoder1.GetNewFeatures(data, features1); encoder2.GetNewFeatures(data, features2);
This implementation allows the use of arbitrary mlpack optimizers via the OptimizerType template parameter.
Template Parameters:
OptimizerType The optimizer to use; by default this is L-BFGS. Any mlpack optimizer can be used here.
Definition at line 78 of file sparse_autoencoder.hpp.
Construct the sparse autoencoder model with the given training data. This will train the model. The parameters 'lambda', 'beta' and 'rho' can be set optionally. Changing these parameters will have an effect on regularization and sparsity of the model.
Parameters:
data Input data with each column as one example.
visibleSize Size of input vector expected at the visible layer.
hiddenSize Size of input vector expected at the hidden layer.
lambda L2-regularization parameter.
beta KL divergence parameter.
rho Sparsity parameter.
Construct the sparse autoencoder model with the given training data. This will train the model. This overload takes an already instantiated optimizer and uses it to train the model. The optimizer should hold an instantiated SparseAutoencoderFunction object for the function to operate upon. This option should be preferred when the optimizer options are to be changed.
Parameters:
optimizer Instantiated optimizer with instantiated error function.
Sets the KL divergence parameter.
Definition at line 170 of file sparse_autoencoder.hpp.
References mlpack::nn::SparseAutoencoder< OptimizerType >::beta.
Gets the KL divergence parameter.
Definition at line 176 of file sparse_autoencoder.hpp.
References mlpack::nn::SparseAutoencoder< OptimizerType >::beta.
Transforms the provided data into the representation learned by the sparse autoencoder. The function basically performs a feedforward computation using the learned weights, and returns the hidden layer activations.
Parameters:
data Matrix of the provided data.
features The hidden layer representation of the provided data.
Sets size of the hidden layer.
Definition at line 146 of file sparse_autoencoder.hpp.
Gets the size of the hidden layer.
Definition at line 152 of file sparse_autoencoder.hpp.
References mlpack::nn::SparseAutoencoder< OptimizerType >::hiddenSize.
Sets the L2-regularization parameter.
Definition at line 158 of file sparse_autoencoder.hpp.
References mlpack::nn::SparseAutoencoder< OptimizerType >::lambda.
Gets the L2-regularization parameter.
Definition at line 164 of file sparse_autoencoder.hpp.
References mlpack::nn::SparseAutoencoder< OptimizerType >::lambda.
Sets the sparsity parameter.
Definition at line 182 of file sparse_autoencoder.hpp.
References mlpack::nn::SparseAutoencoder< OptimizerType >::rho.
Gets the sparsity parameter.
Definition at line 188 of file sparse_autoencoder.hpp.
References mlpack::nn::SparseAutoencoder< OptimizerType >::rho.
Returns the elementwise sigmoid of the passed matrix, where the sigmoid function of a real number 'x' is [1 / (1 + exp(-x))].
Parameters:
x Matrix of real values for which we require the sigmoid activation.
Definition at line 128 of file sparse_autoencoder.hpp.
Sets size of the visible layer.
Definition at line 134 of file sparse_autoencoder.hpp.
Gets size of the visible layer.
Definition at line 140 of file sparse_autoencoder.hpp.
References mlpack::nn::SparseAutoencoder< OptimizerType >::visibleSize.
KL divergence parameter.
Definition at line 203 of file sparse_autoencoder.hpp.
Referenced by mlpack::nn::SparseAutoencoder< OptimizerType >::Beta().
Size of the hidden layer.
Definition at line 199 of file sparse_autoencoder.hpp.
Referenced by mlpack::nn::SparseAutoencoder< OptimizerType >::HiddenSize().
L2-regularization parameter.
Definition at line 201 of file sparse_autoencoder.hpp.
Referenced by mlpack::nn::SparseAutoencoder< OptimizerType >::Lambda().
Parameters after optimization.
Definition at line 195 of file sparse_autoencoder.hpp.
Sparsity parameter.
Definition at line 205 of file sparse_autoencoder.hpp.
Referenced by mlpack::nn::SparseAutoencoder< OptimizerType >::Rho().
Size of the visible layer.
Definition at line 197 of file sparse_autoencoder.hpp.
Referenced by mlpack::nn::SparseAutoencoder< OptimizerType >::VisibleSize().
Generated automatically by Doxygen for MLPACK from the source code.