Vowpal wabbit -- fast online learning tool
-h [ --help ]
Look here: http://hunch.net/~vw/ and click on Tutorial.
--active_learning
active learning mode
--active_simulation
active learning simulation mode
--active_mellowness arg
active learning mellowness parameter c_0. Default 8
--binary
report loss as binary classification on -1,1
--autolink arg
create link function with polynomial d
--sgd
use regular stochastic gradient descent update.
--adaptive
use adaptive, individual learning rates.
--invariant
use safe/importance aware updates.
--normalized
use per feature normalized updates
--exact_adaptive_norm
use current default invariant normalized adaptive update rule
-a [ --audit ]
print weights of features
-b [ --bit_precision ] arg
number of bits in the feature table
--bfgs
use bfgs optimization
-c [ --cache ]
Use a cache. The default is <data>.cache
--cache_file arg
The location(s) of cache_file.
--compressed
use gzip format whenever possible. If a cache file is being created, this option creates a compressed cache file. A mixture of raw-text & compressed inputs are supported with autodetection.
--no_stdin
do not default to reading from stdin
--conjugate_gradient
use conjugate gradient based optimization
--csoaa arg
Use one-against-all multiclass learning with <k> costs
--wap arg
Use weighted all-pairs multiclass learning with <k> costs
--csoaa_ldf arg
Use one-against-all multiclass learning with label dependent features. Specify singleline or multiline.
--wap_ldf arg
Use weighted all-pairs multiclass learning with label dependent features.
Specify singleline or multiline.
--cb arg
Use contextual bandit learning with <k> costs
--l1 arg
l_1 lambda
--l2 arg
l_2 lambda
-d [ --data ] arg
Example Set
--daemon
persistent daemon mode on port 26542
--num_children arg
number of children for persistent daemon mode
--pid_file arg
Write pid file in persistent daemon mode
--decay_learning_rate arg
Set Decay factor for learning_rate between passes
--input_feature_regularizer arg
Per feature regularization input file
-f [ --final_regressor ] arg
Final regressor
--readable_model arg
Output human-readable final regressor
--hash arg
how to hash the features. Available options: strings, all
--hessian_on
use second derivative in line search
--version
Version information
--ignore arg
ignore namespaces beginning with character <arg>
--keep arg
keep namespaces beginning with character <arg>
-k [ --kill_cache ]
do not reuse existing cache: create a new one always
--initial_weight arg
Set all weights to an initial value of 1.
-i [ --initial_regressor ] arg
Initial regressor(s)
--initial_pass_length arg
initial number of examples per pass
--initial_t arg
initial t value
--lda arg
Run lda with <int> topics
--span_server arg
Location of server for setting up spanning tree
--min_prediction arg
Smallest prediction to output
--max_prediction arg
Largest prediction to output
--mem arg
memory in bfgs
--nn arg
Use sigmoidal feedforward network with <k> hidden units
--noconstant
Don't add a constant feature
--noop
do no learning
--oaa arg
Use one-against-all multiclass learning with <k> labels
--ect arg
Use error correcting tournament with <k> labels
--output_feature_regularizer_binary arg
Per feature regularization output file
--output_feature_regularizer_text arg Per feature regularization output file,
in text
--port arg
port to listen on
--power_t arg
t power value
-l [ --learning_rate ] arg
Set Learning Rate
--passes arg
Number of Training Passes
--termination arg
Termination threshold
-p [ --predictions ] arg
File to output predictions to
-q [ --quadratic ] arg
Create and use quadratic features
--cubic arg
Create and use cubic features
--quiet
Don't output diagnostics
--rank arg
rank for matrix factorization.
--random_weights arg
make initial weights random
--random_seed arg
seed random number generator
-r [ --raw_predictions ] arg
File to output unnormalized predictions to
--ring_size arg
size of example ring
--examples arg
number of examples to parse
--save_per_pass
Save the model after every pass over data
--save_resume
save extra state so learning can be resumed later with new data
--sendto arg
send examples to <host>
--searn arg
use searn, argument=maximum action id
--searnimp arg
use searn, argument=maximum action id or 0 for LDF
-t [ --testonly ]
Ignore label information and just test
--loss_function arg (=squared)
Specify the loss function to be used, uses squared by default. Currently available ones are squared, classic, hinge, logistic and quantile.
--quantile_tau arg (=0.5)
Parameter \tau associated with Quantile loss. Defaults to 0.5
--unique_id arg
unique id used for cluster parallel jobs
--total arg
total number of nodes used in cluster parallel job
--node arg
node number in cluster parallel job
--sort_features
turn this on to disregard order in which features have been defined. This will lead to smaller cache sizes
--ngram arg
Generate N grams
--skips arg
Generate skips in N grams. This in conjunction with the ngram tag can be used to generate generalized n-skip-k-gram.