SYNOPSIS

mia-3dbrainextractT1 -i <in-file> -o <out-file> [options]

DESCRIPTION

mia-3dbrainextractT1 This program is used to extract the brain from T1 MR images. It first runs a combined fuzzy c-means clustering and B-field correction to facilitate a 3D segmentation of 3D image. Then various fiters are run to obtain a white matter segmentation as initial mask that is then used to run a region growing to obtain a mask of the whole brain. Finally, this mask is used to extact the brain from the B0 field corrected images.

OPTIONS

-i --in-file=(input,required)

input image(s) to be segmented For supported file types see PLUGINS:3dimage/io

-o --out-file=(output,required)

brain mask For supported file types see PLUGINS:3dimage/io

-n --no-of-classes=3

number of classes

-w --wm-class=2

index of white matter

-p --wm-prob=0.7

white matter class probability for initial mask creation

-t --grow-threshold=20

intensity threshold for region growing

--grow-shape=18n

neighbourhood mask region growing

Help & Info

-V --verbose=warning

verbosity of output, print messages of given level and higher priorities. Supported priorities starting at lowest level are:

info \(hy Low level messages

trace \(hy Function call trace

fail \(hy Report test failures

warning \(hy Warnings

error \(hy Report errors

debug \(hy Debug output

message \(hy Normal messages

fatal \(hy Report only fatal errors

--copyright

print copyright information

-h --help

print this help

-? --usage

print a short help

--version

print the version number and exit

Processing

--threads=-1

Maxiumum number of threads to use for processing,This number should be lower or equal to the number of logical processor cores in the machine. (-1: automatic estimation).

PLUGINS: 3dimage/io

analyze

Analyze 7.5 image

Recognized file extensions: .HDR, .hdr

Supported element types:

unsigned 8 bit, signed 16 bit, signed 32 bit, floating point 32 bit, floating point 64 bit

datapool

Virtual IO to and from the internal data pool

Recognized file extensions: .@

dicom

Dicom image series as 3D

Recognized file extensions: .DCM, .dcm

Supported element types:

signed 16 bit, unsigned 16 bit

hdf5

HDF5 3D image IO

Recognized file extensions: .H5, .h5

Supported element types:

binary data, signed 8 bit, unsigned 8 bit, signed 16 bit, unsigned 16 bit, signed 32 bit, unsigned 32 bit, floating point 32 bit, floating point 64 bit

inria

INRIA image

Recognized file extensions: .INR, .inr

Supported element types:

signed 8 bit, unsigned 8 bit, signed 16 bit, unsigned 16 bit, signed 32 bit, unsigned 32 bit, floating point 32 bit, floating point 64 bit

mhd

MetaIO 3D image IO using the VTK implementation (experimental).

Recognized file extensions: .MHA, .MHD, .mha, .mhd

Supported element types:

signed 8 bit, unsigned 8 bit, signed 16 bit, unsigned 16 bit, signed 32 bit, unsigned 32 bit, floating point 32 bit, floating point 64 bit

nifti

NIFTI-1 3D image IO

Recognized file extensions: .NII, .nii

Supported element types:

signed 8 bit, unsigned 8 bit, signed 16 bit, unsigned 16 bit, signed 32 bit, unsigned 32 bit, floating point 32 bit, floating point 64 bit

vff

VFF Sun raster format

Recognized file extensions: .VFF, .vff

Supported element types:

unsigned 8 bit, signed 16 bit

vista

Vista 3D

Recognized file extensions: .V, .VISTA, .v, .vista

Supported element types:

binary data, signed 8 bit, unsigned 8 bit, signed 16 bit, unsigned 16 bit, signed 32 bit, unsigned 32 bit, floating point 32 bit, floating point 64 bit

vti

3D image VTK-XML in- and output (experimental).

Recognized file extensions: .VTI, .vti

Supported element types:

signed 8 bit, unsigned 8 bit, signed 16 bit, unsigned 16 bit, signed 32 bit, unsigned 32 bit, floating point 32 bit, floating point 64 bit

vtk

3D VTK image legacy in- and output (experimental).

Recognized file extensions: .VTK, .VTKIMAGE, .vtk, .vtkimage

Supported element types:

binary data, signed 8 bit, unsigned 8 bit, signed 16 bit, unsigned 16 bit, signed 32 bit, unsigned 32 bit, floating point 32 bit, floating point 64 bit

EXAMPLE

Create a mask from the input image by running a 5-class segmentation over inpt image input.v and use class 4 as white matter class and store the masked image in masked.v and the B0-field corrected image in b0.v mia-3dbrainextractT1 -i input.v -n 5 -w 4 -o masked.v

AUTHOR(s)

Gert Wollny

COPYRIGHT

This software is Copyright (c) 1999\(hy2013 Leipzig, Germany and Madrid, Spain. It comes with ABSOLUTELY NO WARRANTY and you may redistribute it under the terms of the GNU GENERAL PUBLIC LICENSE Version 3 (or later). For more information run the program with the option '--copyright'.