• 70

#### Section 3: Library calls

cgbmv.3
Perform one of the matrix-vector operations y := alpha*a*x + beta*y, or y := alpha*a'*x + beta*y, or y := alpha*conjg( a' )*x + beta*y,
cgemv.3
Perform one of the matrix-vector operations y := alpha*a*x + beta*y, or y := alpha*a'*x + beta*y, or y := alpha*conjg( a' )*x + beta*y,
cgerc.3
Perform the rank 1 operation a := alpha*x*conjg( y' ) + a,
cgeru.3
Perform the rank 1 operation a := alpha*x*y' + a,
chbmv.3
Perform the matrix-vector operation y := alpha*a*x + beta*y,
chemv.3
Perform the matrix-vector operation y := alpha*a*x + beta*y,
cher.3
Perform the hermitian rank 1 operation a := alpha*x*conjg( x' ) + a,
cher2.3
Perform the hermitian rank 2 operation a := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + a,
chpmv.3
Perform the matrix-vector operation y := alpha*a*x + beta*y,
chpr.3
Perform the hermitian rank 1 operation a := alpha*x*conjg( x' ) + a,
chpr2.3
Perform the hermitian rank 2 operation a := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + a,
cscal.3
Scales a vector by a constant.
ctbmv.3
Perform one of the matrix-vector operations x := a*x, or x := a'*x, or x := conjg( a' )*x,
ctbsv.3
Solve one of the systems of equations a*x = b, or a'*x = b, or conjg( a' )*x = b,
ctpmv.3
Perform one of the matrix-vector operations x := a*x, or x := a'*x, or x := conjg( a' )*x,
ctpsv.3
Solve one of the systems of equations a*x = b, or a'*x = b, or conjg( a' )*x = b,
ctrmv.3
Perform one of the matrix-vector operations x := a*x, or x := a'*x, or x := conjg( a' )*x,
ctrsv.3
Solve one of the systems of equations a*x = b, or a'*x = b, or conjg( a' )*x = b,
dgbmv.3
Perform one of the matrix-vector operations y := alpha*a*x + beta*y, or y := alpha*a'*x + beta*y,
dgemv.3
Perform one of the matrix-vector operations y := alpha*a*x + beta*y, or y := alpha*a'*x + beta*y,
dger.3
Perform the rank 1 operation a := alpha*x*y' + a,
dsbmv.3
Perform the matrix-vector operation y := alpha*a*x + beta*y,
dspmv.3
Perform the matrix-vector operation y := alpha*a*x + beta*y,
dspr.3
Perform the symmetric rank 1 operation a := alpha*x*x' + a,
dspr2.3
Perform the symmetric rank 2 operation a := alpha*x*y' + alpha*y*x' + a,
dsymv.3
Perform the matrix-vector operation y := alpha*a*x + beta*y,
dsyr.3
Perform the symmetric rank 1 operation a := alpha*x*x' + a,
dsyr2.3
Perform the symmetric rank 2 operation a := alpha*x*y' + alpha*y*x' + a,
dtbmv.3
Perform one of the matrix-vector operations x := a*x, or x := a'*x,
dtbsv.3
Solve one of the systems of equations a*x = b, or a'*x = b,
dtpmv.3
Perform one of the matrix-vector operations x := a*x, or x := a'*x,
dtpsv.3
Solve one of the systems of equations a*x = b, or a'*x = b,
dtrmv.3
Perform one of the matrix-vector operations x := a*x, or x := a'*x,
dtrsv.3
Solve one of the systems of equations a*x = b, or a'*x = b,
sgbmv.3
Perform one of the matrix-vector operations y := alpha*a*x + beta*y, or y := alpha*a'*x + beta*y,
sgemv.3
Perform one of the matrix-vector operations y := alpha*a*x + beta*y, or y := alpha*a'*x + beta*y,
sger.3
Perform the rank 1 operation a := alpha*x*y' + a,
ssbmv.3
Perform the matrix-vector operation y := alpha*a*x + beta*y,
sspmv.3
Perform the matrix-vector operation y := alpha*a*x + beta*y,
sspr.3
Perform the symmetric rank 1 operation a := alpha*x*x' + a,
sspr2.3
Perform the symmetric rank 2 operation a := alpha*x*y' + alpha*y*x' + a,
ssymv.3
Perform the matrix-vector operation y := alpha*a*x + beta*y,
ssyr.3
Perform the symmetric rank 1 operation a := alpha*x*x' + a,
ssyr2.3
Perform the symmetric rank 2 operation a := alpha*x*y' + alpha*y*x' + a,
stbmv.3
Perform one of the matrix-vector operations x := a*x, or x := a'*x,
stbsv.3
Solve one of the systems of equations a*x = b, or a'*x = b,
stpmv.3
Perform one of the matrix-vector operations x := a*x, or x := a'*x,
stpsv.3
Solve one of the systems of equations a*x = b, or a'*x = b,
strmv.3
Perform one of the matrix-vector operations x := a*x, or x := a'*x,
strsv.3
Solve one of the systems of equations a*x = b, or a'*x = b,
xerbla.3
I an error handler for the lapack routines
zgbmv.3
Perform one of the matrix-vector operations y := alpha*a*x + beta*y, or y := alpha*a'*x + beta*y, or y := alpha*conjg( a' )*x + beta*y,
zgemv.3
Perform one of the matrix-vector operations y := alpha*a*x + beta*y, or y := alpha*a'*x + beta*y, or y := alpha*conjg( a' )*x + beta*y,
zgerc.3
Perform the rank 1 operation a := alpha*x*conjg( y' ) + a,
zgeru.3
Perform the rank 1 operation a := alpha*x*y' + a,
zhbmv.3
Perform the matrix-vector operation y := alpha*a*x + beta*y,
zhemv.3
Perform the matrix-vector operation y := alpha*a*x + beta*y,
zher.3
Perform the hermitian rank 1 operation a := alpha*x*conjg( x' ) + a,
zher2.3
Perform the hermitian rank 2 operation a := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + a,
zhpmv.3
Perform the matrix-vector operation y := alpha*a*x + beta*y,
zhpr.3
Perform the hermitian rank 1 operation a := alpha*x*conjg( x' ) + a,
zhpr2.3
Perform the hermitian rank 2 operation a := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + a,
zrotg.3
Construct givens plane rotation
zscal.3
Scales a vector by a constant.
ztbmv.3
Perform one of the matrix-vector operations x := a*x, or x := a'*x, or x := conjg( a' )*x,
ztbsv.3
Solve one of the systems of equations a*x = b, or a'*x = b, or conjg( a' )*x = b,
ztpmv.3
Perform one of the matrix-vector operations x := a*x, or x := a'*x, or x := conjg( a' )*x,
ztpsv.3
Solve one of the systems of equations a*x = b, or a'*x = b, or conjg( a' )*x = b,
ztrmv.3
Perform one of the matrix-vector operations x := a*x, or x := a'*x, or x := conjg( a' )*x,
ztrsv.3
Solve one of the systems of equations a*x = b, or a'*x = b, or conjg( a' )*x = b,