SYNOPSIS

Functions/Subroutines

subroutine zgtcon (NORM, N, DL, D, DU, DU2, IPIV, ANORM, RCOND, WORK, INFO)

ZGTCON

Function/Subroutine Documentation

subroutine zgtcon (characterNORM, integerN, complex*16, dimension( * )DL, complex*16, dimension( * )D, complex*16, dimension( * )DU, complex*16, dimension( * )DU2, integer, dimension( * )IPIV, double precisionANORM, double precisionRCOND, complex*16, dimension( * )WORK, integerINFO)

ZGTCON

Purpose:

 ZGTCON estimates the reciprocal of the condition number of a complex
 tridiagonal matrix A using the LU factorization as computed by
 ZGTTRF.

 An estimate is obtained for norm(inv(A)), and the reciprocal of the
 condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).

Parameters:

NORM

          NORM is CHARACTER*1
          Specifies whether the 1-norm condition number or the
          infinity-norm condition number is required:
          = '1' or 'O':  1-norm;
          = 'I':         Infinity-norm.

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

DL

          DL is COMPLEX*16 array, dimension (N-1)
          The (n-1) multipliers that define the matrix L from the
          LU factorization of A as computed by ZGTTRF.

D

          D is COMPLEX*16 array, dimension (N)
          The n diagonal elements of the upper triangular matrix U from
          the LU factorization of A.

DU

          DU is COMPLEX*16 array, dimension (N-1)
          The (n-1) elements of the first superdiagonal of U.

DU2

          DU2 is COMPLEX*16 array, dimension (N-2)
          The (n-2) elements of the second superdiagonal of U.

IPIV

          IPIV is INTEGER array, dimension (N)
          The pivot indices; for 1 <= i <= n, row i of the matrix was
          interchanged with row IPIV(i).  IPIV(i) will always be either
          i or i+1; IPIV(i) = i indicates a row interchange was not
          required.

ANORM

          ANORM is DOUBLE PRECISION
          If NORM = '1' or 'O', the 1-norm of the original matrix A.
          If NORM = 'I', the infinity-norm of the original matrix A.

RCOND

          RCOND is DOUBLE PRECISION
          The reciprocal of the condition number of the matrix A,
          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
          estimate of the 1-norm of inv(A) computed in this routine.

WORK

          WORK is COMPLEX*16 array, dimension (2*N)

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

September 2012

Definition at line 141 of file zgtcon.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.