Zgerq2.f -
subroutine zgerq2 (M, N, A, LDA, TAU, WORK, INFO)
ZGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.
ZGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.
Purpose:
ZGERQ2 computes an RQ factorization of a complex m by n matrix A: A = R * Q.
Parameters:
M
M is INTEGER The number of rows of the matrix A. M >= 0.
N
N is INTEGER The number of columns of the matrix A. N >= 0.
A
A is COMPLEX*16 array, dimension (LDA,N) On entry, the m by n matrix A. On exit, if m <= n, the upper triangle of the subarray A(1:m,n-m+1:n) contains the m by m upper triangular matrix R; if m >= n, the elements on and above the (m-n)-th subdiagonal contain the m by n upper trapezoidal matrix R; the remaining elements, with the array TAU, represent the unitary matrix Q as a product of elementary reflectors (see Further Details).
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M).
TAU
TAU is COMPLEX*16 array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details).
WORK
WORK is COMPLEX*16 array, dimension (M)
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
September 2012
Further Details:
The matrix Q is represented as a product of elementary reflectors Q = H(1)**H H(2)**H . . . H(k)**H, where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v**H where tau is a complex scalar, and v is a complex vector with v(n-k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(1:n-k+i-1)) is stored on exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i).
Definition at line 124 of file zgerq2.f.
Generated automatically by Doxygen for LAPACK from the source code.