Slagv2.f -
subroutine slagv2 (A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, CSL, SNL, CSR, SNR)
SLAGV2 computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular.
SLAGV2 computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular.
Purpose:
 SLAGV2 computes the Generalized Schur factorization of a real 2-by-2
 matrix pencil (A,B) where B is upper triangular. This routine
 computes orthogonal (rotation) matrices given by CSL, SNL and CSR,
 SNR such that
 1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0
    types), then
    [ a11 a12 ] := [  CSL  SNL ] [ a11 a12 ] [  CSR -SNR ]
    [  0  a22 ]    [ -SNL  CSL ] [ a21 a22 ] [  SNR  CSR ]
    [ b11 b12 ] := [  CSL  SNL ] [ b11 b12 ] [  CSR -SNR ]
    [  0  b22 ]    [ -SNL  CSL ] [  0  b22 ] [  SNR  CSR ],
 2) if the pencil (A,B) has a pair of complex conjugate eigenvalues,
    then
    [ a11 a12 ] := [  CSL  SNL ] [ a11 a12 ] [  CSR -SNR ]
    [ a21 a22 ]    [ -SNL  CSL ] [ a21 a22 ] [  SNR  CSR ]
    [ b11  0  ] := [  CSL  SNL ] [ b11 b12 ] [  CSR -SNR ]
    [  0  b22 ]    [ -SNL  CSL ] [  0  b22 ] [  SNR  CSR ]
    where b11 >= b22 > 0.
Parameters:
A
          A is REAL array, dimension (LDA, 2)
          On entry, the 2 x 2 matrix A.
          On exit, A is overwritten by the ``A-part'' of the
          generalized Schur form.
LDA
          LDA is INTEGER
          THe leading dimension of the array A.  LDA >= 2.
B
          B is REAL array, dimension (LDB, 2)
          On entry, the upper triangular 2 x 2 matrix B.
          On exit, B is overwritten by the ``B-part'' of the
          generalized Schur form.
LDB
          LDB is INTEGER
          THe leading dimension of the array B.  LDB >= 2.
ALPHAR
          ALPHAR is REAL array, dimension (2)
ALPHAI
          ALPHAI is REAL array, dimension (2)
BETA
          BETA is REAL array, dimension (2)
          (ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the
          pencil (A,B), k=1,2, i = sqrt(-1).  Note that BETA(k) may
          be zero.
CSL
          CSL is REAL
          The cosine of the left rotation matrix.
SNL
          SNL is REAL
          The sine of the left rotation matrix.
CSR
          CSR is REAL
          The cosine of the right rotation matrix.
SNR
          SNR is REAL
          The sine of the right rotation matrix.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
September 2012
Contributors:
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
Definition at line 157 of file slagv2.f.
Generated automatically by Doxygen for LAPACK from the source code.