SYNOPSIS

#include <cerf.h>

double _Complex w_of_z ( double _Complex z );

double im_w_of_x ( double x );

DESCRIPTION

Faddeeva's rescaled complex error function w(z), also called the plasma dispersion function.

w_of_z returns w(z) = exp(-z^2) * erfc(-i*z).

im_w_of_x returns Im[w(x)].

RESOURCES

Project web site: http://apps.jcns.fz-juelich.de/libcerf

REFERENCES

To compute w(z), a combination of two algorithms is used:

For sufficiently large |z|, a continued-fraction expansion similar to those described by Gautschi (1970) and Poppe & Wijers (1990).

Otherwise, Algorithm 916 by Zaghloul & Ali (2011), which is generally competitive at small |z|, and more accurate than the Poppe & Wijers expansion in some regions, e.g. in the vicinity of z=1+i.

To compute Im[w(x)], Chebyshev polynomials and continous fractions are used.

Milton Abramowitz and Irene M. Stegun, \*(L"Handbook of Mathematical Functions\*(R", National Bureau of Standards (1964): Formula (7.1.3) introduces the nameless function w(z).

Walter Gautschi, \*(L"Efficient computation of the complex error function,\*(R" \s-1SIAM\s0 J. Numer. Anal. 7, 187 (1970).

G. P. M. Poppe and C. M. J. Wijers, \*(L"More efficient computation of the complex error function,\*(R" \s-1ACM\s0 Trans. Math. Soft. 16, 38 (1990).

Mofreh R. Zaghloul and Ahmed N. Ali, \*(L"Algorithm 916: Computing the Faddeyeva and Voigt Functions,\*(R" \s-1ACM\s0 Trans. Math. Soft. 38, 15 (2011).

Steven G. Johnson, http://ab-initio.mit.edu/Faddeeva (accessed January 2013).

BUG REPORTS

Please report bugs to the authors.

AUTHORS

Steven G. Johnson [http://math.mit.edu/~stevenj],

  Massachusetts Institute of Technology,
  researched the numerics, and implemented the Faddeeva function.

Joachim Wuttke <[email protected]>, Forschungszentrum Juelich,

  reorganized the code into a library, and wrote this man page.

RELATED TO im_w_of_x…

This function is used within liberfc to compute several other complex error functions:

dawson\|(3), voigt\|(3), cerf\|(3), erfcx\|(3), erfi\|(3).

COPYING

Copyright (c) 2012 Massachusetts Institute of Technology

Copyright (c) 2013 Forschungszentrum Juelich GmbH

Software: \s-1MIT\s0 License.

This documentation: Creative Commons Attribution Share Alike.