Underflow-compensated complementary error function
#include <cerf.h>
double _Complex cerfcx ( double _Complex z );
double erfcx ( double x );
The function cerfcx is an underflow-compensated variant of the complex error function: erfcx(z) = exp(z^2) erfc(z).
The function erfcx takes a real argument and returns a real result.
Project web site: http://apps.jcns.fz-juelich.de/libcerf
The implementation of cerfcx is a thin wrapper around Faddeeva's function w_of_z.
The implementation of ercx is self-contained, and improves upon the \s-1SLATEC\s0 \s-1DERFC\s0 function (or an erfcx function derived therefrom) or Cody's \s-1CALERF\s0 function (from netlib.org/specfun), while retaining near machine precision in accuracy.
Please report bugs to the authors.
Steven G. Johnson [http://math.mit.edu/~stevenj],
Massachusetts Institute of Technology, researched the numerics, and implemented the Faddeeva function.
Joachim Wuttke <[email protected]>, Forschungszentrum Juelich,
reorganized the code into a library, and wrote this man page.
Related complex error functions in liberfc:
w_of_z\|(3), dawson\|(3), voigt\|(3), cerf\|(3), erfi\|(3).
The real error function comes with recent versions of glibc, as requested by the C99 standard:
erf\|(3)
Copyright (c) 2012 Massachusetts Institute of Technology
Copyright (c) 2013 Forschungszentrum Juelich GmbH
Software: \s-1MIT\s0 License.
This documentation: Creative Commons Attribution Share Alike.