SYNOPSIS

#include <cerf.h>

double _Complex cerfcx ( double _Complex z );

double erfcx ( double x );

DESCRIPTION

The function cerfcx is an underflow-compensated variant of the complex error function: erfcx(z) = exp(z^2) erfc(z).

The function erfcx takes a real argument and returns a real result.

RESOURCES

Project web site: http://apps.jcns.fz-juelich.de/libcerf

REFERENCES

The implementation of cerfcx is a thin wrapper around Faddeeva's function w_of_z.

The implementation of ercx is self-contained, and improves upon the \s-1SLATEC\s0 \s-1DERFC\s0 function (or an erfcx function derived therefrom) or Cody's \s-1CALERF\s0 function (from netlib.org/specfun), while retaining near machine precision in accuracy.

BUG REPORTS

Please report bugs to the authors.

AUTHORS

Steven G. Johnson [http://math.mit.edu/~stevenj],

  Massachusetts Institute of Technology,
  researched the numerics, and implemented the Faddeeva function.

Joachim Wuttke <[email protected]>, Forschungszentrum Juelich,

  reorganized the code into a library, and wrote this man page.

RELATED TO erfcx…

Related complex error functions in liberfc:

w_of_z\|(3), dawson\|(3), voigt\|(3), cerf\|(3), erfi\|(3).

The real error function comes with recent versions of glibc, as requested by the C99 standard:

erf\|(3)

COPYING

Copyright (c) 2012 Massachusetts Institute of Technology

Copyright (c) 2013 Forschungszentrum Juelich GmbH

Software: \s-1MIT\s0 License.

This documentation: Creative Commons Attribution Share Alike.