SYNOPSIS

Functions/Subroutines

subroutine dspevd (JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO)

DSPEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices

Function/Subroutine Documentation

subroutine dspevd (characterJOBZ, characterUPLO, integerN, double precision, dimension( * )AP, double precision, dimension( * )W, double precision, dimension( ldz, * )Z, integerLDZ, double precision, dimension( * )WORK, integerLWORK, integer, dimension( * )IWORK, integerLIWORK, integerINFO)

DSPEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices

Purpose:

 DSPEVD computes all the eigenvalues and, optionally, eigenvectors
 of a real symmetric matrix A in packed storage. If eigenvectors are
 desired, it uses a divide and conquer algorithm.

 The divide and conquer algorithm makes very mild assumptions about
 floating point arithmetic. It will work on machines with a guard
 digit in add/subtract, or on those binary machines without guard
 digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
 Cray-2. It could conceivably fail on hexadecimal or decimal machines
 without guard digits, but we know of none.

Parameters:

JOBZ

          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.

UPLO

          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

AP

          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
          On entry, the upper or lower triangle of the symmetric matrix
          A, packed columnwise in a linear array.  The j-th column of A
          is stored in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

          On exit, AP is overwritten by values generated during the
          reduction to tridiagonal form.  If UPLO = 'U', the diagonal
          and first superdiagonal of the tridiagonal matrix T overwrite
          the corresponding elements of A, and if UPLO = 'L', the
          diagonal and first subdiagonal of T overwrite the
          corresponding elements of A.

W

          W is DOUBLE PRECISION array, dimension (N)
          If INFO = 0, the eigenvalues in ascending order.

Z

          Z is DOUBLE PRECISION array, dimension (LDZ, N)
          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
          eigenvectors of the matrix A, with the i-th column of Z
          holding the eigenvector associated with W(i).
          If JOBZ = 'N', then Z is not referenced.

LDZ

          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= max(1,N).

WORK

          WORK is DOUBLE PRECISION array,
                                         dimension (LWORK)
          On exit, if INFO = 0, WORK(1) returns the required LWORK.

LWORK

          LWORK is INTEGER
          The dimension of the array WORK.
          If N <= 1,               LWORK must be at least 1.
          If JOBZ = 'N' and N > 1, LWORK must be at least 2*N.
          If JOBZ = 'V' and N > 1, LWORK must be at least
                                                 1 + 6*N + N**2.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the required sizes of the WORK and IWORK
          arrays, returns these values as the first entries of the WORK
          and IWORK arrays, and no error message related to LWORK or
          LIWORK is issued by XERBLA.

IWORK

          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
          On exit, if INFO = 0, IWORK(1) returns the required LIWORK.

LIWORK

          LIWORK is INTEGER
          The dimension of the array IWORK.
          If JOBZ  = 'N' or N <= 1, LIWORK must be at least 1.
          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.

          If LIWORK = -1, then a workspace query is assumed; the
          routine only calculates the required sizes of the WORK and
          IWORK arrays, returns these values as the first entries of
          the WORK and IWORK arrays, and no error message related to
          LWORK or LIWORK is issued by XERBLA.

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  if INFO = i, the algorithm failed to converge; i
                off-diagonal elements of an intermediate tridiagonal
                form did not converge to zero.

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

November 2011

Definition at line 179 of file dspevd.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.