Dlasd5.f -
subroutine dlasd5 (I, D, Z, DELTA, RHO, DSIGMA, WORK)
DLASD5 computes the square root of the i-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix. Used by sbdsdc.
DLASD5 computes the square root of the i-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix. Used by sbdsdc.
Purpose:
This subroutine computes the square root of the I-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix diag( D ) * diag( D ) + RHO * Z * transpose(Z) . The diagonal entries in the array D are assumed to satisfy 0 <= D(i) < D(j) for i < j . We also assume RHO > 0 and that the Euclidean norm of the vector Z is one.
Parameters:
I
I is INTEGER The index of the eigenvalue to be computed. I = 1 or I = 2.
D
D is DOUBLE PRECISION array, dimension ( 2 ) The original eigenvalues. We assume 0 <= D(1) < D(2).
Z
Z is DOUBLE PRECISION array, dimension ( 2 ) The components of the updating vector.
DELTA
DELTA is DOUBLE PRECISION array, dimension ( 2 ) Contains (D(j) - sigma_I) in its j-th component. The vector DELTA contains the information necessary to construct the eigenvectors.
RHO
RHO is DOUBLE PRECISION The scalar in the symmetric updating formula.
DSIGMA
DSIGMA is DOUBLE PRECISION The computed sigma_I, the I-th updated eigenvalue.
WORK
WORK is DOUBLE PRECISION array, dimension ( 2 ) WORK contains (D(j) + sigma_I) in its j-th component.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
September 2012
Contributors:
Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA
Definition at line 117 of file dlasd5.f.
Generated automatically by Doxygen for LAPACK from the source code.