Dlagv2.f -
subroutine dlagv2 (A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, CSL, SNL, CSR, SNR)
DLAGV2 computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular.
DLAGV2 computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular.
Purpose:
DLAGV2 computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular. This routine computes orthogonal (rotation) matrices given by CSL, SNL and CSR, SNR such that 1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0 types), then [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ] [ 0 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ] [ b11 b12 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ] [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ], 2) if the pencil (A,B) has a pair of complex conjugate eigenvalues, then [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ] [ a21 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ] [ b11 0 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ] [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ] where b11 >= b22 > 0.
Parameters:
A
A is DOUBLE PRECISION array, dimension (LDA, 2) On entry, the 2 x 2 matrix A. On exit, A is overwritten by the ``A-part'' of the generalized Schur form.
LDA
LDA is INTEGER THe leading dimension of the array A. LDA >= 2.
B
B is DOUBLE PRECISION array, dimension (LDB, 2) On entry, the upper triangular 2 x 2 matrix B. On exit, B is overwritten by the ``B-part'' of the generalized Schur form.
LDB
LDB is INTEGER THe leading dimension of the array B. LDB >= 2.
ALPHAR
ALPHAR is DOUBLE PRECISION array, dimension (2)
ALPHAI
ALPHAI is DOUBLE PRECISION array, dimension (2)
BETA
BETA is DOUBLE PRECISION array, dimension (2) (ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the pencil (A,B), k=1,2, i = sqrt(-1). Note that BETA(k) may be zero.
CSL
CSL is DOUBLE PRECISION The cosine of the left rotation matrix.
SNL
SNL is DOUBLE PRECISION The sine of the left rotation matrix.
CSR
CSR is DOUBLE PRECISION The cosine of the right rotation matrix.
SNR
SNR is DOUBLE PRECISION The sine of the right rotation matrix.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
September 2012
Contributors:
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
Definition at line 157 of file dlagv2.f.
Generated automatically by Doxygen for LAPACK from the source code.