SYNOPSIS

Functions/Subroutines

subroutine cunmhr (SIDE, TRANS, M, N, ILO, IHI, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)

CUNMHR

Function/Subroutine Documentation

subroutine cunmhr (characterSIDE, characterTRANS, integerM, integerN, integerILO, integerIHI, complex, dimension( lda, * )A, integerLDA, complex, dimension( * )TAU, complex, dimension( ldc, * )C, integerLDC, complex, dimension( * )WORK, integerLWORK, integerINFO)

CUNMHR

Purpose:

 CUNMHR overwrites the general complex M-by-N matrix C with

                 SIDE = 'L'     SIDE = 'R'
 TRANS = 'N':      Q * C          C * Q
 TRANS = 'C':      Q**H * C       C * Q**H

 where Q is a complex unitary matrix of order nq, with nq = m if
 SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
 IHI-ILO elementary reflectors, as returned by CGEHRD:

 Q = H(ilo) H(ilo+1) . . . H(ihi-1).

Parameters:

SIDE

          SIDE is CHARACTER*1
          = 'L': apply Q or Q**H from the Left;
          = 'R': apply Q or Q**H from the Right.

TRANS

          TRANS is CHARACTER*1
          = 'N': apply Q  (No transpose)
          = 'C': apply Q**H (Conjugate transpose)

M

          M is INTEGER
          The number of rows of the matrix C. M >= 0.

N

          N is INTEGER
          The number of columns of the matrix C. N >= 0.

ILO

          ILO is INTEGER

IHI

          IHI is INTEGER

          ILO and IHI must have the same values as in the previous call
          of CGEHRD. Q is equal to the unit matrix except in the
          submatrix Q(ilo+1:ihi,ilo+1:ihi).
          If SIDE = 'L', then 1 <= ILO <= IHI <= M, if M > 0, and
          ILO = 1 and IHI = 0, if M = 0;
          if SIDE = 'R', then 1 <= ILO <= IHI <= N, if N > 0, and
          ILO = 1 and IHI = 0, if N = 0.

A

          A is COMPLEX array, dimension
                               (LDA,M) if SIDE = 'L'
                               (LDA,N) if SIDE = 'R'
          The vectors which define the elementary reflectors, as
          returned by CGEHRD.

LDA

          LDA is INTEGER
          The leading dimension of the array A.
          LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.

TAU

          TAU is COMPLEX array, dimension
                               (M-1) if SIDE = 'L'
                               (N-1) if SIDE = 'R'
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by CGEHRD.

C

          C is COMPLEX array, dimension (LDC,N)
          On entry, the M-by-N matrix C.
          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

LDC

          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).

WORK

          WORK is COMPLEX array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK

          LWORK is INTEGER
          The dimension of the array WORK.
          If SIDE = 'L', LWORK >= max(1,N);
          if SIDE = 'R', LWORK >= max(1,M).
          For optimum performance LWORK >= N*NB if SIDE = 'L', and
          LWORK >= M*NB if SIDE = 'R', where NB is the optimal
          blocksize.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

November 2011

Definition at line 179 of file cunmhr.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.