SYNOPSIS

#include <cerf.h>

double _Complex cdawson ( double _Complex z );

double dawson ( double x );

DESCRIPTION

The function cdawson returns Dawson's integral D(z) = exp(-z^2) integral from 0 to z exp(t^2) dt = sqrt(pi)/2 * exp(-z^2) * erfi(z).

For function dawson takes a real argument x, and returns the real result D(x).

RESOURCES

Project web site: http://apps.jcns.fz-juelich.de/libcerf

REFERENCES

The computation of D(z) is based on Faddeeva's function w_of_z; to compute D(x), the imaginary part im_w_of_x is used.

BUG REPORTS

Please report bugs to the authors.

AUTHORS

Steven G. Johnson [http://math.mit.edu/~stevenj],

  Massachusetts Institute of Technology,
  researched the numerics, and implemented the Faddeeva function.

Joachim Wuttke <[email protected]>, Forschungszentrum Juelich,

  reorganized the code into a library, and wrote this man page.

RELATED TO cdawson…

Related complex error functions in liberfc:

w_of_z\|(3), voigt\|(3), cerf\|(3), erfcx\|(3), erfi\|(3).

COPYING

Copyright (c) 2012 Massachusetts Institute of Technology

Copyright (c) 2013 Forschungszentrum Juelich GmbH

Software: \s-1MIT\s0 License.

This documentation: Creative Commons Attribution Share Alike.