SYNOPSIS

#include <complex.h>

double complex cacosh(double complex z);

float complex cacoshf(float complex z);

long double complex cacoshl(long double complex z);

Link with -lm.

DESCRIPTION

The cacosh() function calculates the complex arc hyperbolic cosine of z. If y = cacosh(z), then z = ccosh(y). The imaginary part of y is chosen in the interval [-pi,pi]. The real part of y is chosen nonnegative.

One has:

    cacosh(z) = 2 * clog(csqrt((z + 1) / 2) + csqrt((z - 1) / 2))

VERSIONS

These functions first appeared in glibc in version 2.1.

CONFORMING TO

C99.

EXAMPLE

/* Link with "-lm" */

#include <complex.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>

int
main(int argc, char *argv[])
{
    double complex z, c, f;

    if (argc != 3) {
        fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]);
        exit(EXIT_FAILURE);
    }

    z = atof(argv[1]) + atof(argv[2]) * I;

    c = cacosh(z);
    printf("cacosh() = %6.3f %6.3f*i\n", creal(c), cimag(c));

    f = 2 * clog(csqrt((z + 1)/2) + csqrt((z - 1)/2));
    printf("formula  = %6.3f %6.3f*i\n", creal(f2), cimag(f2));

    exit(EXIT_SUCCESS);
}

RELATED TO cacoshf…

COLOPHON

This page is part of release 3.74 of the Linux man-pages project. A description of the project, information about reporting bugs, and the latest version of this page, can be found at http://www.kernel.org/doc/man-pages/.