Complex arc cosine
#include <complex.h>
double complex cacos(double complex z);
float complex cacosf(float complex z);
long double complex cacosl(long double complex z);
Link with -lm.
The cacos() function calculates the complex arc cosine of z. If y = cacos(z), then z = ccos(y). The real part of y is chosen in the interval [0,pi].
One has:
cacos(z) = -i * clog(z + i * csqrt(1 - z * z))
These functions first appeared in glibc in version 2.1.
C99.
/* Link with "-lm" */ #include <complex.h> #include <stdlib.h> #include <unistd.h> #include <stdio.h> int main(int argc, char *argv[]) { double complex z, c, f; double complex i = I; if (argc != 3) { fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]); exit(EXIT_FAILURE); } z = atof(argv[1]) + atof(argv[2]) * I; c = cacos(z); printf("cacos() = %6.3f %6.3f*i\n", creal(c), cimag(c)); f = -i * clog(z + i * csqrt(1 - z * z)); printf("formula = %6.3f %6.3f*i\n", creal(f), cimag(f)); exit(EXIT_SUCCESS); }
This page is part of release 3.74 of the Linux man-pages project. A description of the project, information about reporting bugs, and the latest version of this page, can be found at http://www.kernel.org/doc/man-pages/.