SYNOPSIS

#include <sys/fsuid.h>

int setfsuid(uid_t fsuid);

DESCRIPTION

The system call setfsuid() changes the value of the caller's filesystem user ID–the user ID that the Linux kernel uses to check for all accesses to the filesystem. Normally, the value of the filesystem user ID will shadow the value of the effective user ID. In fact, whenever the effective user ID is changed, the filesystem user ID will also be changed to the new value of the effective user ID.

Explicit calls to setfsuid() and setfsgid(2) are usually used only by programs such as the Linux NFS server that need to change what user and group ID is used for file access without a corresponding change in the real and effective user and group IDs. A change in the normal user IDs for a program such as the NFS server is a security hole that can expose it to unwanted signals. (But see below.)

setfsuid() will succeed only if the caller is the superuser or if fsuid matches either the caller's real user ID, effective user ID, saved set-user-ID, or current filesystem user ID.

RETURN VALUE

On both success and failure, this call returns the previous filesystem user ID of the caller.

VERSIONS

This system call is present in Linux since version 1.2.

CONFORMING TO

setfsuid() is Linux-specific and should not be used in programs intended to be portable.

NOTES

When glibc determines that the argument is not a valid user ID, it will return -1 and set errno to EINVAL without attempting the system call.

At the time when this system call was introduced, one process could send a signal to another process with the same effective user ID. This meant that if a privileged process changed its effective user ID for the purpose of file permission checking, then it could become vulnerable to receiving signals sent by another (unprivileged) process with the same user ID. The filesystem user ID attribute was thus added to allow a process to change its user ID for the purposes of file permission checking without at the same time becoming vulnerable to receiving unwanted signals. Since Linux 2.0, signal permission handling is different (see kill(2)), with the result that a process change can change its effective user ID without being vulnerable to receiving signals from unwanted processes. Thus, setfsuid() is nowadays unneeded and should be avoided in new applications (likewise for setfsgid(2)).

The original Linux setfsuid() system call supported only 16-bit user IDs. Subsequently, Linux 2.4 added setfsuid32() supporting 32-bit IDs. The glibc setfsuid() wrapper function transparently deals with the variation across kernel versions.

BUGS

No error indications of any kind are returned to the caller, and the fact that both successful and unsuccessful calls return the same value makes it impossible to directly determine whether the call succeeded or failed. Instead, the caller must resort to looking at the return value from a further call such as setfsuid(-1) (which will always fail), in order to determine if a preceding call to setfsuid() changed the filesystem user ID. At the very least, EPERM should be returned when the call fails (because the caller lacks the CAP_SETUID capability).

RELATED TO setfsuid32…

COLOPHON

This page is part of release 3.74 of the Linux man-pages project. A description of the project, information about reporting bugs, and the latest version of this page, can be found at http://www.kernel.org/doc/man-pages/.