A fouth order tensor
The tensor4 class defines a fourth tensor where indices varie from zero to 2 (aka 3D physical space).
template<class T> class tensor4_basic { public: typedef size_t size_type; typedef T element_type; typedef T float_type; // allocators: tensor4_basic (const T& init_val = 0); tensor4_basic (const tensor4_basic<T>& a); #ifdef _RHEOLEF_HAVE_STD_INITIALIZER_LIST tensor4_basic (const std::initializer_list<std::initializer_list< std::initializer_list<std::initializer_list<T> > > >& il); #endif // _RHEOLEF_HAVE_STD_INITIALIZER_LIST // affectation: tensor4_basic<T>& operator= (const tensor4_basic<T>& a); tensor4_basic<T>& operator= (const T& val); // accessors: T& operator()(size_type i, size_type j, size_type k, size_type l); const T& operator()(size_type i, size_type j, size_type k, size_type l) const; // algebra: tensor4_basic<T>& operator*= (const T& k); tensor4_basic<T>& operator/= (const T& k) { return operator*= (1./k); } tensor4_basic<T> operator+ (const tensor4_basic<T>& b) const; tensor4_basic<T> operator- (const tensor4_basic<T>& b) const; // io: std::ostream& put (std::ostream& out, size_type d=3) const; // data: protected: T _x [3][3][3][3]; }; typedef tensor4_basic<Float> tensor4; // nonlinear algebra: template <class T> T norm2 (const tensor4_basic<T>&); template <class T> T norm (const tensor4_basic<T>& a) { return sqrt(norm2(a)); } template <class T> tensor4_basic<T> dexp (const tensor_basic<T>& a, size_t d = 3); // algebra: template <class T> tensor_basic<T> ddot (const tensor4_basic<T>&, const tensor_basic<T>&); template <class T> tensor_basic<T> ddot (const tensor_basic<T>&, const tensor4_basic<T>&);